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Abstract—Modern approaches to simultaneous localization and
mapping (SLAM) formulate the inference problem as a high-
dimensional but sparse nonconvex M-estimation, and then apply
general first- or second-order smooth optimization methods to
recover a local minimizer of the objective function. The perfor-
mance of any such approach depends crucially upon initializing
the optimization algorithm near a good solution for the inference
problem, a condition that is often difficult or impossible to
guarantee in practice. To address this limitation, in this paper
we present a formulation of the SLAM M-estimation with the
property that, by expanding the feasible set of the estimation pro-
gram, we obtain a convex relaxation whose solution approximates
the globally optimal solution of the SLAM inference problem and
can be recovered using a smooth optimization method initialized
at any feasible point. Our formulation thus provides a means
to obtain a high-quality solution to the SLAM problem without
requiring high-quality initialization.

I. INTRODUCTION

The ability to learn a map of an initially unknown environ-
ment while simultaneously localizing within that map as it is
being constructed (a procedure known as simultaneous local-
ization and mapping (SLAM)) is a fundamental competency
in robotics [1]. Consequently, SLAM has been the focus of a
sustained research effort over the previous three decades, and
there now exist a variety of mature algorithms and software
libraries to solve this problem in practice (cf. [2]-[5]).

State-of-the-art approaches to SLAM typically formulate the
inference problem as a high-dimensional but sparse nonconvex
M-estimation [6], and then apply general first- or second-order
smooth optimization methods to estimate a critical point of the
objective function. This approach admits the development of
straightforward and fast inference algorithms, but its computa-
tional expedience comes at the expense of robustness: specif-
ically, the optimization methods that underpin these SLAM
techniques are usually only able to guarantee convergence to
a first-order critical point of the objective (i.e. a local minimum
or saddle point), rather than the globally optimal solution [7].
This restriction to local rather than global solutions has several
important undesirable practical ramifications.

The most serious limitation is that the solution to which
any such method ultimately converges is determined by its
initialization. This is particularly pernicious in the context of
SLAM, in which the combination of a high-dimensional state
space and significant nonlinearities in the objective function
(due to e.g. the effects of rotational degrees of freedom in the
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Fig. 1. The effects of poor initialization on the SLAM estimation for the
torus11500 dataset (11500 6DOF poses, 22643 pose-pose measurements). (a):
The ground truth map. (b): A poor (randomly sampled) initial estimate. (c):
The solution obtained from Levenberg-Marquardt initialized with (b). (d): The
solution obtained by first solving a convex relaxation of the original SLAM
estimation problem (also initialized using (b)) to produce an approximation to
the globally optimal solution, and then refining this approximation in a second-
stage optimization using Levenberg-Marquardt. This approach recovers a
globally consistent estimate in spite of the poor initialization.

estimated states or the use of nonlinear robust cost functions)
can give rise to complex cost surfaces containing many local
minima in which smooth optimization methods can become
entrapped. The performance of any such SLAM technique thus
depends crucially upon initializing the back-end optimization
algorithm with an estimate that is close to a good solution for
the inference task (Fig. 1). However, it is far from clear that
this condition can always be satisfied in practice, especially
in view of the fact that the entire point of solving the SLAM
problem is precisely to obtain such a high-quality estimate.
One general strategy for attacking challenging optimization
problems of this type that has proven to be very successful
is convex relaxation. In this approach, the original problem is
modified in such a way as to produce a convex approximation
(for which a globally optimal solution can be readily obtained
using local smooth optimization techniques initialized at any
feasible point [8]), whose solution then approximates a so-
lution for the original problem. While theoretical bounds on
the approximation loss of such relaxations are often difficult to



produce (or turn out to be quite weak), a large body of numer-
ical experience has shown that this approach often performs
remarkably well in practice when applied to “typical” problem
instances (i.e., instances that are not artificially adversarial).

Motivated by this prior experience, in this paper we pro-
pose a practical approach to global optimization in SLAM
via convex relaxation. Our approach formulates the SLAM
problem as an instance of M-estimation with the property that,
by expanding the feasible set of the estimation program, we
obtain a convex relaxation whose globally optimal solution can
be computed efficiently in practice; by projecting this solution
onto the feasible set of the original program, we thereby obtain
a good approximation of the global solution to the original
SLAM M-estimation problem which is suitable for subsequent
refinement with a local smooth optimization technique. Our
approach thus provides a means to obtain a good estimate for
the globally optimal solution of the SLAM problem without
the need to supply a high-quality initialization.

II. THE SLAM M-ESTIMATION AND ITS CONVEX
RELAXATION

A. Notation and mathematical preliminaries

Our development will make frequent use of the geometry
of the special orthogonal and special Euclidean groups and
their realizations as subsets of linear spaces. To that end,
in this subsection we briefly establish some notational and
mathematical preliminaries that will be useful in the sequel.

We let [n] = {1,2,...,n} denote the first n positive
integers and R> the nonnegative real numbers. We denote
by SO(n) the realization of the special orthogonal group as
the set of n x n orthogonal matrices with +1 determinant:

SO(n) £ {ReR™" |RTR=RR" =1, det R=1}. (1)

Similarly, we will denote by SE(n) the realization of the
special Euclidean group! as the semidirect product

SE(n) £ R" x SO(n) )
under the group operation &:

@: SE(n) x SE(n) = SE(n)

3)
(t1,R1) © (t2, R2) = (t1 + Rata, R1Ry).
SE(n) also has a group action’> e on R™ given by:
o: SE(n) xR" - R"
“)

(t,R) ez = Rx + 1.

Finally, we denote by V' (n) the real vector space containing
the realization (1)-(3) of SE(n):

V(n) £ R" x R™*", (3)

! This Lie group models the set of robot poses in n-dimensional Euclidean
space under the operation of odometric composition.

2 This action transforms a point whose coordinates = € R are specified in
the global coordinate frame (the frame of the identity pose (0, 1) € SE(n))
to coordinates in the frame associated with the robot pose (¢, R) € SE(n).

B. The SLAM M-estimation problem

In this section we provide a brief review of the pose-and-
landmark SLAM inference problem; interested readers are
encouraged to consult [1], [9] for a more detailed presentation.

We consider a robot attempting to learn a map of some
initially unknown environment. As the robot explores, it moves
through some sequence of poses pi,...,p,, € SE(n) in the
environment while observing some collection of landmarks
li,...ylp, € R™ for n € {2,3}. We assume that the robot
is able to collect noisy observations z;; € SE(n) of pose p,
in the coordinate system of pose p; for some subset of pairs
(i,7) € P C [ny] % [n,], and noisy observations l;;, € R™ of
the position of landmark [;, in the coordinate frame of pose p;
for some subset of pairs (i,k) € £ C [n,] x [n]. The goal is
then to estimate the configuration of the states

£F

In,) € (SE(n))™ x (R™)™ (6)

X £ <p17"'7pnp7lla"'a
(i.e. the poses p; and landmarks [) given the observations
Z2{z; | (i,j) € PYU{li | (i, k) € L} . @)

Now in prinf:iple, the poses p;, landmarks [, and observa-
tions Z;; and l;; should satisfy the measurement equations:

(8a)
(8b)

Dj = Pi D Zij
Iy = pi ol

for all (i,j) € P and all (i,k) € L; however, because
the observations Z;; and I, are corrupted by sensor noise,
equations (8) are generally inconsistent in the sense that no
choice of states X in (6) can satisfy them all simultaneously.
Thus, in practice, the SLAM inference problem is solved via
M-estimation [6]: we define a set of cost functions

¢ij(pi,pj): SE(n) x SE(n) = Rx>q
cik(piylk): SE(n) x R™ — Rsq

Y(i,j) € P (9a)
V(i, k) € L (9b)
that penalize the failure of equations (8) to hold, and then

define an optimal state estimate X* € JF to be one that
minimizes the cumulative cost of the penalties (9):

£f(X)

X* =argmin Z ¢ij(pi, pj) + Z cik(pi» )
XeF (ijer (i.k)eL

subject to p; = (0,1).

(10)

In practice, the cost functions ¢;; and ¢;;, in (9) and (10) are
usually chosen as negative log-likelihoods for some assumed
measurement models p;;(Z;;|p;, p;) and pir(Lin|ps, 1) (i.e. for
some assumed distribution on the measurement noise affecting
the observations z;; and 1;1), in which case the M-estimation
in (10) is actually a maximum-likelihood estimation. For
example, the most common formulation of the SLAM problem
assumes additive mean-zero Gaussian noise models, for which



the corresponding negative log-likelihood functions are:
e 2 T 2
¢ij(Pispj) = llwijllsr + \|ti; — RY (t; — tz‘)Hz;j
- 2
S (pis i) = ik — R (I — ti)HZik )

where ||z||s £ V2T~ 1z is the norm corresponding to the
Mahalanobis distance, Zf}, Zﬁj, ik = 0 are the noise covari-
ance matrices, and w;; € R3 is the axis-angle representation
for the rotational measurement residual R} R;RY; € SO(3)
(that is, w;; satisfies [w;;] = log(R} R;R};)). However, for
our purposes it will be convenient to admit more general (i.e.
non-probabilistic) cost functions in the sequel.

(11a)

(11b)

C. Convex relaxation of the SLAM M-estimation

In general, the SLAM M-estimation (10) is a high-
dimensional nonconvex nonlinear program, and thus can be
quite challenging to solve using smooth numerical optimiza-
tion methods [7]. To address this difficulty, in this section
we describe a special class of instances of (10) that admits
a straightforward convex relaxation, whose globally optimal
solution can be found using these techniques.

Our approach is based upon the observation that if we
model the (abstract) special Euclidean group SFE(n) using the
realization defined in (1)—(3), then the feasible set F for the
SLAM M-estimation (10) embeds into the linear space

S2 (V(n)™ x (R™)™.

The embedding F < S provides us with a means to
“convexify” F by enlarging it to its convex hull within the
ambient linear space S. If we additionally select the objective
function f in (10) such that it has a convex extension defined
over the convex hull of F, then the relaxation of (10) obtained
by extending F to conv F within S will be a convex program.

1) Selecting the cost functions: We wish to determine cost
functions ¢;; and ¢;, in (9) that have convex extensions over
the convex hulls of their respective domains. Given that we are
working within an ambient linear space, a natural cost function
to consider is a norm: these are convex by definition, and
the metric topology that they generate is the usual Euclidean
topology (so that the “costs” they assign agree with the usual
notion of “closeness” in these spaces). By virtue of (3) and
(8a), we might therefore consider the pose-pose measurement
error functions:

R _
€ij(pispj) = | R — Rilkij],
ei;j(pi,ps) = IIt; — (ti + Ritiy)]|,

for (i,j) € P, where ||| denotes any choice of matrix or

vector norm in (13a) and (13b), respectively; these functions
then serve to quantify the disagreement between the rotational
and translational components of the left- and right-hand sides

of (8a). Similarly, by virtue of (4) and (8b), we might consider
a pose-landmark measurement error function of the form

eir(pis k) = |l — (ti + Rilix)|,

for (i, k) € L, where ||-|| is any vector norm. Finally, in order
to implement a robust M-estimation, we might wish to allow

12)

(13a)
(13b)

(14)

the possibility of composing the error functions in (13) and
(14) with robust cost functions p: R>¢ — R>q [6]. Thus, we
will consider cost functions ¢;; and c;;, of the form

¢ij(pi,ps) = piy (1R = RiRigll) + pi; (It — (ti + Ritij)|)
(15a)

cik(pisle) = pir (1l — (ti + Rilix)|]) - (15b)
2) Constructing the convex relaxation: Here we establish

our main result: a prescription for constructing a convex

relaxation of the SLAM M-estimation program (10).

Lemma 1. Let C be a convex set, f: C — R>o a convex
Sfunction on C, and g: R>y — Rx>¢ a convex and nonde-
creasing function on the nonnegative real numbers. Then the
composition go f: C — Rxq is also convex.

Proof: Let x1,x2 € C and X € [0, 1]. Then

Oz + (1 = Na2) < Af(x1) + (1 =N f(z2) (16)

by the convexity of f. Since g is nondecreasing and convex,
then (16) implies

g(f(Azy 4+ (1 = N)z2)) < g(Af(z1) + (1 = A) f(x2))
< Ag(f(z1)) + (1 = AN)g(f(2))

which is the desired inequality. O

Theorem 1 (Convex relaxation of the SLAM M-estimation).
Let c;; and c;;, be the cost functions defined in (15) with
pg, pfj, pik: R>0 — R>q convex nondecreasing functions for
all (i,5) € P and (i,k) € L, and let

(17a)

C(n) = conv SE(n) = R™ x conv.SO(n)
£ (17b)

conv F = (C(n))"™ x (R™)™

denote the convex hulls of SE(n) in V(n) and F in S,
respectively. Then the objective function f: F — R>q defined
in (10) extends to a convex function f: F - R>o, and
the relaxation obtained from the SLAM M-estimation (10) by
extending F to F:

X* =argmin f(X)
XeF
subject to p1 = (0, 1)

(18)

is a convex program.

. . R t : :
Proof: The functions e; > €ijo and e;;; defined in equations

(13)—(14) are compositions of linear inner functions with
convex outer functions (the norms), and are therefore convex
(cf. [8, Sec. 3.2]); Lemma 1 thus guarantees that the cost
functions ¢;; = pf} o efj- +pi;joel; and cip = pig © e, defined
in (15) are convex, and therefore so is their sum f in (18)
(recall (10)). We also observe that the feasible set of (18) is
the intersection of the convex set F in (17b) with the affine
set determined by the constraint p; = (0, I), and is therefore
also convex. Problem (18) is thus a convex program. O
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Fig. 2. Constructing the convex relaxation (18). (a): This figure plots
the value of the rotational cost function Eg (Ri, Rj) defined in (19) as a
function of R; € SO(2) for a;; = 1 and R; = R;; = I2, using the
realization SO(2) = {(¢ %) | ¢ + s = 1} C R?*2 described in
(1). (b): The rotational cost éﬁ(Ri, Rj) shown in (a) extends to a convex
function Eﬁ (Ri, R;) for R;, R; € conv SO(2), where the set conv SO(2)
is characterized explicitly by (20). The construction for SO(3) using (19)
and (21) is analogous.

D. The relation between the convex relaxation and the stan-
dard maximum-likelihood formulation of SLAM

The standard formulation of the SLAM problem (10) derives
the cost functions (11) from an assumed Gaussian noise model,
whereas our selection of the cost functions (13)-(15) was
primarily motivated by a desire to obtain a convex objective for
(18). It may therefore not be immediately clear how these two
models relate, or whether the objective f in (18) constructed
from (13)—(15) carries a natural interpretation in the same way
that a negative log-likelihood objective does. To that end, here
we briefly describe a specific choice of the cost functions (15)
that act as pointwise upper bounds on the standard negative
log-likelihood cost functions (11) for all X € F. We present
the following theorem without proof, in the interest of brevity:

Theorem 2. For the following choice of cost functions (15):
& (R Ry) & (pi,ps)

~ = 2 — 2

Cij(piypj) = Quj HRj - RiRinF + Bij Ity — (ti + Ritij)|5

- N

Cir(pis k) = iz || Ik — (s + Ralar) ||

19)

where ||| is the Frobenius norm and |||z is the usual
Euclidean norm, it holds that ¢ (p;,p;) < &;(pi,p;) and
¢ (pisle) < Cik(pisli) for all pi,p; € SE(3) and ), € R3
provided that

7-(2

1 1
o> 0 o> - o>
Y = 4)\min(25)7 IBZJ - )\min(zi?j)7 i = )\min(zik)

The practical import of Theorem 2 is that it shows how
to construct a specific class of admissible cost functions (15)
for the convex relaxation (18) in such a way that minimizing
the convex objective f (as the relaxation (18) attempts to do)
still “does the right thing” with respect to the usual Gaussian
maximum-likelihood formulation of the SLAM problem. Fig.
2 illustrates the convex relaxation (18) obtained by using the
cost functions (19) for the case of mapping in two dimensions.

III. APPROXIMATE GLOBAL OPTIMIZATION IN SLAM
USING THE CONVEX RELAXATION

In this section we discuss several practical aspects of solving
the convex relaxation (18) and extracting from it an approxi-
mate global solution of the original SLAM M-estimation (10).

Our point of departure (in Section III-A) is the observation
that the feasible set for the program (18) has a convenient spec-
trahedral description (i.e. it can be expressed as the solution
set for a linear matrix inequality [10]). We show in Section
III-B how to exploit this description (in the form of log-
determinant barrier functions) to enable the implementation of
a fast second-order interior-point optimization method [7] to
solve the relaxation (18) efficiently in practice, and discuss
several of the computational advantages that this approach
affords. Finally, having obtained a global solution X* to
the convex relaxation (18) using this interior-point technique,
we describe in Section III-C a simple but effective rounding
procedure to extract from X* a good initial estimate X for the
global minimizer of the original SLAM M-estimation (10).

A. Spectrahedral description of conv SO(n)

In order to implement the optimization (18) in practice, it
is necessary to have a computational means of testing for
membership in the feasible set F (in particular, of testing for
membership in conv SO(n) in (17a)). Fortunately, a suitable
criterion is provided by the following theorem due to Saun-
derson, Parrilo and Willsky [11]:

Theorem 3 (Spectrahedral description of conv SO(n)). The
convex hull of SO(n) is a spectrahedron for all n € N.
For the special cases n = 2 and n = 3, the corresponding

spectrahedral descriptions are given explicitly by equations
(20) and (21):

1+c¢
S

7 c —S S
conv SO(2) = R:L C}Eszzz { 1_4&0 . (20)
2A2(R)
By means of Theorem 3, we can rewrite (18) as:
X* =argmin f(X)
Xes
subject to p; = (0,1)
Ay(R) =0 Vi=2,...,n,

where A, is the linear matrix operator defined in (20) or (21).

Program (22) is a constrained convex optimization problem,
but in contrast to the usual (scalar) equality and inequality con-
straints that one most commonly encounters in mathematical
programming, the constraints appearing in (22) are positive
semidefiniteness constraints; they require that the eigenvalues
of the (symmetric) matrices A,, (RZ) be nonnegative. As there
is in general no closed-form algebraic solution for the eigen-
values of a matrix in terms of its elements, it may not be
immediately clear how one can effectively enforce constraints
of this sort when designing a numerical optimization method to
solve (22) in practice; we describe a suitable technique based
upon interior-point methods in the next subsection.

(22)



1— Rll - Rgz + Ras ~R13 +~R31 ~ 1:312 - 1:321 }:%23 + }:%32
~ . Ris+ R 1+ Ry — Ry — R Ros — R Ris + R
conv SO(3) = ¢ B c R3x3. 13 + 1331 11 22 33 Haz — A3z 12 + [ -0 21
(8) 5512 - @21 {323 - {332 1+ Rp + Rgz + Rs3 ~331 _~R13 ~ - @h
Rosz + R3o Rys + Ry R31 — Ri3 1— Ri1 + Roa — R3s3

B. Solving the convex relaxation

In this subsection we describe a computationally efficient
optimization method for solving large-scale but sparse prob-
lems of the form (22) effectively in practice. Our approach is
based upon exploiting properties of the class of interior-point
methods for nonlinear programming [7] to enable the replace-
ment of each positive semidefiniteness constraint An(f%i) =0
in (22) with an inequality constraint of the form c¢(R;) > 0
for a scalar-valued function c(-).

1) Interior-point methods for nonlinear programming:
Interior-point methods for nonlinear programming aim to solve
constrained optimization problems of the form

ci(xz) =0,
Cl(x) > 07

1 €€,

23
1€XZ, @3)

minimize f(x) subject to {
zERC

(where f,c;: RY — R are real-valued, continuously-
differentiable functions on R? and £ and Z are disjoint finite
index sets of equality and inequality constraints, respectively)
by approximating a solution z* of (23) using the first compo-
nent # of a solution (Z,5) to the corresponding logarithmic
barrier program:

minimize
(z,s)ER? xRIZI

fle)—p) logs;

= ”
. ci(x)=0, €&, 24
subject to )
ci(z) =84 1€T,

where ;1 > 0 is called the barrier parameter. Notice that
the inequality constraints in the original nonlinear program
(23) have been replaced in (24) by equalities involving the
slack variables s € RIZI. While this requires that §; > 0 for
all # € Z in order for Z to be feasible in (23), observe that
we needn’t explicitly enforce this condition in (24); the fact
that lim,,_,o+ —logs; = +oo together with the second set
of equality constraints in (24) prevents the solutions Z from
encroaching on the boundary of the feasible set of (23). In
this way, the logarithmic terms in the objective in (24) act as
a “barrier” that serves to keep the estimates Z in the interior of
the feasible set of the original program. While the estimate &
arising from (24) will thus generally not coincide exactly with
a solution z* of (23), one can show that & — x* as u — 0.
Thus, in this approach the strategy is to solve a sequence of
barrier problems of the form (24) for decreasing values of y;
since each of these barrier programs is an equality-constrained
optimization, it can in turn be solved directly using the usual
method of Lagrange multipliers [7].

£A3(R)

2) Enforcing positive semidefiniteness constraints with
interior-point methods: Given a symmetric matrix S € R™*",
the condition that S > 0 is equivalent to the condition that
each of S’s (real) eigenvalues is nonnegative: \;(S) > 0
for ¢ = 1,...,n. Now although there is in general no
closed-form algebraic solution to compute the eigenvalues
Ai(S) as a function of S’s elements, it is nevertheless still
possible to enforce the nonnegativity conditions A;(S) > 0
when performing numerical optimization with an interior-point
method by enforcing a clever (scalar) inequality constraint of
the form ¢(S) > 0.

Recall that the determinant of a matrix is the product of that
matrix’s eigenvalues:

n
det(S) = [ Mi(S). (25)
i=1
Consider enforcing a constraint of the form det(S) > 0 when
applying an interior-point method; the barrier term in the
corresponding logarithmic barrier program (24) is then:

— plogdet(S) = —ulog <ﬁ /\i(S)> = —,uzn:log Ai(9).

(26)
But now observe that the right-hand side of (26) is precisely
the barrier term associated with the system of inequalities:

N(S)>0 Vi=1,...,n. Q7

Equation (26) thus implies that a positive semidefiniteness
constraint of the form S > 0 can be replaced with a scalar
constraint of the form det(S) > 0 when solving nonlinear
programs using an interior-point method, provided that the
algorithm is initialized with a strictly feasible starting point
S©) = 0; in that case, the fact that \;(S(®) > 0 for all
i =1,...,n by construction, together with the presence of the
barrier term —pu log det(S) in the logarithmic barrier program
(24) (which prevents det(S*)) — 0, i.e., prevents any of
the X\;(S(*)) from changing sign during the optimization),
ensures that every iterate S(*) likewise satisfies S*) = 0.
(As an aside, this observation forms the basis for the class of
central path-following interior-point methods for semidefinite
programming; cf. [10, Sec. 4].)

3) Practical implementation of the optimization: In light
of (23)—(27), we can solve (22) by applying an interior-point
method to the program

X* =argmin f(X)
Xes
subject to p; = (0,1)

det(An(R)) >0 Vi=2,...,n,

(28)



provided that the algorithm is initialized with a strictly feasible
starting point (i.e. a point X9 for which p; = (0,1) and
An(]:BZ(-O)) > 0 for ¢ = 2,...,n). This is the approach that we
will implement to solve (18) in practice.

4) Computational considerations: To close this subsection,
we briefly highlight some of the attractive computational
properties of the optimization approach described above.

Interior-point methods are a state-of-the-art class of accu-
rate, high-speed techniques for solving large-scale nonlinear
programs, and enjoy excellent global convergence and numer-
ical robustness properties [7], [12]. Furthermore, the fact that
the constraints in (28) involve only unary functions of the gen-
eralized orientations R; means that the block-sparsity pattern
of the Hessian of the Lagrangian of the barrier programs (24)
coincides (after substitution to eliminate the slack variables)
with that of the Hessian of f(X) in (10) alone. Consequently,
we expect the computational complexity of solving (28) using
an interior-point method based upon the exact (i.e. second-
order) Newton step (cf. [13], [14], among others) will scale
gracefully to problem sizes typical of those addressed by state-
of-the-art least-squares methods for SLAM [3]-[5]. Solving
program (28) using interior-point methods thus provides a
numerically robust and computationally efficient approach to
obtain solutions X* of the convex relaxation (18).

C. Rounding the solution of the relaxed program

The convex relaxation (18) is obtained from the original
M-estimation (10) by expanding the original feasible set to
its convex hull (more precisely, by expanding the feasible
set SO(n) for the pose orientation estimates to its convex
hull conv SO(n), as shown in Fig. 2). While this is desirable
for the computational advantages that convex programming
affords, it also means that the solution X* of (18) will
generally not lie in the feasible set for the original program
(10); consequently, we must provide a method for transforming
a solution X* of (18) into a feasible point for (10), a procedure
known as rounding.

In this case, since the objective functions for the original
program (10) and its convex relaxation (18) are actually
identical, we would like to design a rounding method that
perturbs the solution X* of (18) as little as is possible (in some
sense) in order to restore feasibility in (10). Thus, one natural
way to round X* is by replacing each generalized orientation
estimate Rf € conv SO(n) with the nearest (in some sense)
valid rotation matrix; i.e., we first define a rounding procedure

mr: conv.SO(n) — SO(n)

7r(R) € argmin |R — R||
ReSO(n)

(29)

that sends each R} to a closest rotation matrix in some norm
||, and then define a rounding procedure 7: F — F for
X* that simply fixes all translational estimates and sends
each generalized orientation estimate R; to one of its nearest

rotation matrices m(R;):

ﬂ—(ﬁlw"?ﬁnpallu '7lnz) = (ﬁ17"‘7ﬁ’ﬂp7llﬂ "7lnz) (30)

where
pi = (ti, mr(R:)) Vi € [ny)].

Rounding procedures of the form (29) have been studied
previously, and there exist straightforward and efficient meth-
ods to compute the mapping wr(-) (based upon the singular
value decomposition [15] of R) for the special case in which
the norm ||-|| in (29) is the Frobenius norm [16].

€2V

IV. RELATED WORK

The formulation of the SLAM inference problem as an
instance of the M-estimation (10) is originally due to Lu &
Milios [17], who proposed the use of nonconvex negative
log-likelihood cost functions similar to (11); this formulation
remains the basis for current state-of-the-art SLAM techniques
(e.g. [2]-[5]), with most modern algorithms differing princi-
pally only in how the optimization problem (10) is solved.

The most common approach is to use an approximate New-
ton least-squares method (as in [3]-[5]) or gradient descent
(as in [2]) to estimate a local minimizer of (10); however, as
these methods only guarantee convergence to local minima,
the performance of this approach depends crucially upon
initializing the back-end optimization algorithm near a good
solution for the inference problem. While there has been some
prior work focused specifically on improving the robustness
of local search methods for optimization in SLAM with
respect to poor initialization (e.g. the development of improved
initialization procedures [18] or reparameterizations of the
state space intended to broaden the basins of attraction of
good solutions [2], [19]), ultimately these methods still depend
upon identifying a good initialization for some nonconvex op-
timization using either random sampling or a greedy kinematic
expansion along the edges of a spanning tree through the
network of measurements.

Alternatively, some recent work aims to avoid the brittleness
of smooth local optimization methods with respect to poor
initialization through the use of convex relaxations in a spirit
similar to our own. One notable example is [20], which
guarantees the recovery of the globally optimal orientation
estimates in the 2D pose-graph SLAM problem with high
(user-selectable) probability; however, this approach depends
upon the identification SO(2) = R/27Z, and so appears to
be limited to the 2-dimensional case. Another recent method
similar to our own is [21], which formulates a specific in-
stance of the convex relaxation (10) to solve the pointcloud
registration problem; our approach can be be thought of as an
extension of this work from the special case of single-pose
estimation based on pose-landmark observations to the more
general pose-and-landmark SLAM problem.

In practice, the convex relaxation (18) can be thought of
as an advanced initialization procedure that improves upon
prior work by fusing information from all of the available
measurements Z to produce X* (rather than only a subset
corresponding to the edges of some spanning tree in the
measurement network). We thus expect our approach to be
particularly advantageous versus prior techniques in cases



where the accumulated uncertainty along any single path
through the network of measurements is high (e.g. high-noise
scenarios or networks with deep spanning trees).

V. EXPERIMENTAL RESULTS

In this section we illustrate the performance of the ap-
proximate global optimization method of Section III on two
classes of standard pose-graph SLAM benchmarks, using
the performance of the standard least-squares approach as a
baseline for comparison.

Our test sets for these experiments consist of 100 randomly-
sampled instances of the City and sphere2500 datasets. We
process each dataset twice: once using the usual least-squares
SLAM formulation, and a second time using our two-stage
procedure, in which we first find a minimizer X* of the convex
relaxation (18) (using the cost functions defined in (19)) by
solving (28), compute the rounded estimate X = 77(5( *), and
then use X to initialize a second-stage local refinement using
the standard least-squares SLAM formulation. In both cases
we initialize the first-stage optimization methods using the
odometric initialization.

All experiments were run on a desktop with Intel Xeon
X5660 2.80 GHz processor. The convex optimization (28)
was implemented in MATLAB using the fmincon interior-
point method (which is itself an implementation of KNITRO,
a high-quality interior-point trust-region method for large-
scale nonlinear programming [13], [14]). The least-squares
minimizations in both cases were performed using the imple-
mentation of Levenberg-Marquardt available in the GTSAM
library? with the default settings, so any differences in the
quality of the final estimates produced by these two approaches
are due solely to the effect of refining the initialization using
the convex relaxation (18).

A. Datasets

1) City datasets: In this experiment we evaluate the two
approaches on the City problem, which simulates a robot
traversing a 2D “grid world”; like the well-known Manhattan
world [19], this problem is designed to be challenging for
local optimization methods to solve given poor initial estimates
(for example, those obtained by composing long chains of
odometric measurements). Our test ensemble consists of 100
randomly-sampled problem instances, each with 3908—4285
poses and 7894—10195 pose-pose measurements. Results from
this experiment are summarized in Table I; a representative
instance from the test set is shown in Fig. 3.

2) sphere2500 datasets: We next evaluate the two methods
on a high-noise version of the sphere2500 problem, a standard
3D pose-graph SLAM benchmark. Our test ensemble consists
of 100 randomly-sampled problem instances, each with 2500
poses and 4949 pose-pose measurements. Results from this ex-
periment are summarized in Table II; a representative instance
from the test set is shown in Fig. 3.

3The GTSAM Library (version 2.1.0), available through https://research.cc.
gatech.edu/borg/sites/edu.borg/files/downloads/gtsam-2.1.0.tgz

(b) Odometric initialization
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Fig. 3. A representative instance of the City datasets (4269 poses, 8861
measurements). (a): The ground truth map. (b): The odometric initialization
for this example (objective function value 1.238 E8). (c): The solution
obtained by Levenberg-Marquardt using the odometric initialization (6.887
E7). (d): The solution obtained using the two-stage procedure of Section III
(6.864 E3); this is the same solution obtained when initializing Levenberg-
Marquardt with the ground truth (a). Note that the objective function values for
both (c) and (d) are within £6% of the median values for the corresponding
methods reported in Table I.

B. Discussion

We can see from Tables I and II that the convex relaxation
approach significantly outperformed the standard least-squares
approach on these examples; evidently the accumulated errors
in the odometric initializations were sufficient to prevent the
local search performed by Levenberg-Marquardt from recover-
ing good solutions to the inference problem in most cases. In
contrast, the two-stage convex relaxation approach consistently
finds good solutions to the inference task; indeed, the fact that
(18) is convex implies that the solution X = 7(X*) used to
initialize the second stage refinement is completely immune to
the effects of the accumulated error in the odometric (or any
other) initialization for (18).

Of course, the enhanced performance of the two-stage
approach of Section III versus the standard least-squares ap-
proach comes at the expense of additional computation (specif-
ically, the additional computation needed to solve program
(28) before applying the second-stage refinement). However,
the timing results in Tables I and II show that this additional
overhead is not a serious limitation to the effective use of the
method (in agreement with the analysis of Section I1I-B3), and
is well-compensated by the gain in solution quality.

VI. CONCLUSION

In this paper we proposed a practical method for approxi-
mating the globally optimal solution of the SLAM inference
problem that does not require initialization with a high-quality
estimate. Our approach is based upon a novel formulation of
the SLAM M-estimation with the property that, by expanding
the feasible set of the estimation program, we obtain a convex


https://research.cc.gatech.edu/borg/sites/edu.borg/files/downloads/gtsam-2.1.0.tgz
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Levenberg-Marquardt

Convex relaxation with LM refinement

Mean Median Std. Dev. Mean Median Std. Dev.

Objective function value 1.839 E8 | 6.880 E7 | 2.902 E8 7318 E3 | 7.247 E3 6.917 E2

Computation time (sec) 6.437 3.475 6.968 3.047 E1 | 3.085 El 2.850 E1
TABLE 1

SUMMARY OF RESULTS FOR CITY DATASETS

Levenberg-Marquardt

Convex relaxation with LM refinement

Mean Median Std. Dev. Mean Median Std. Dev.
Objective function value 3711 E7 | 3451 E7 | 2.115 E7 7.370 E3 | 7.370 E3 7.853 El
Computation time (sec) 3.527 3.316 1.176 2.197 E1 2.126 E1 1.210
TABLE 11
SUMMARY OF RESULTS FOR SPHERE2500 DATASETS
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(a) Ground truth

(b) Odometric initialization

(d) Convex relaxation
with second-stage LM
refinement
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Fig. 4. A representative instance of the sphere2500 datasets. (a): The
ground truth map. (b): The odometric initialization for this example (objective
function value 1.318 E8). (c¢): The solution obtained by Levenberg-Marquardt
using the odometric initialization (3.420 E7). (d): The solution obtained using
the two-stage procedure of Section III (7.346 E3); this is the same solution
obtained when initializing Levenberg-Marquardt with the ground truth (a).
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