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Abstract—A recent paper in 3D Pose Graph Optimization
(PGO) shows how a dual Lagrangian formulation of the problem
can be used to verify (and possibly certify) the quality of a
given solution [1]. A limitation of this approach is that, in the
derivation, the authors relax the positive determinant constraint
for the rotations. As a consequence, when the approach fails to
certify an optimal solution (i.e., when the duality gap is non-
zero), one cannot determine if this is due to the relaxation or if
it is an intrinsic feature of the problem at hand.

In this paper we extend the results of [1] by including the de-
terminant constraints in the derivation of the dual, thus showing
that their relaxation is unnecessary. We show experimentally that
this complete formulation does not lead to tangible differences
with respect to the original, relaxed version. This indicates that
the reasons for failures in providing a certificate of optimality
are intrinsic to the problem, and that the determinant constraints
are somehow redundant in common PGO instances.

I. INTRODUCTION

Pose Graph Optimization (PGO) is one of the most popular
formulations of the SLAM problem. The goal of PGO is to
estimate a set of poses (sampled along the trajectory of a
mobile robot) from relative measurements. This is done by
solving a non-convex optimization problem, where the non-
convexity is mainly due to the presence of unknown rotations.

Despite the empirical success of state-of-the-art techniques
for PGO (see [1] for a literature review) current approaches
are not able to guarantee the computation of a global optimal
solution in general problem instances. This is due to the non-
convexity of PGO, which implies that iterative optimization
techniques can be trapped in local minima, resulting in wrong
pose estimates. We argue that the transition of SLAM from
research topic to industrial technology requires techniques
with guaranteed performance. For instance, in autonomous
vehicles, failure to produce a correct SLAM solution may put
passengers’ lives at risk. In other applications, SLAM failures
can possibly cascade into path planning failures, preventing
the reliable operation of mobile robots.

Driven by this motivation, previous works [1–3] use La-
grangian duality as a tool to obtain clear performance guar-
antees. The dual problem can be used for “verification”
purposes [1, 2], i.e., given a PGO estimate (e.g., returned by
an iterative solver), we can use the (convex) dual problem
to evaluate the quality of this estimate and possibly cer-
tify its optimality. Moreover, the dual problem enables the
computation of a guaranteed optimal solution in particular
cases (when the duality gap is zero) [1, 2]. This second use

currently seems less appealing, since it requires solving a large
semidefinite program (SDP); despite the fact that SDPs are
convex problems, current solvers do not scale well and prevent
real time operation. On the other hand, the verification can
be done without solving the SDP [1], and this makes duality
appealing from a practical standpoint.

The present paper provides an extension of the formula-
tion in [1], which derives a dual formulation for 3D PGO
by relaxing the constraints that rotations have positive unit
determinant. Effectively, this changes the domain of the op-
timization problem from rotation matrices (belonging to the
group SO(3)) to orthogonal matrices (belonging to the group
O(3)). In this paper we demonstrate that this relaxation is
unnecessary, and we show how to include the determinant
constraints in the derivation of the dual (Sections III-IV).
Moreover, we present a short summary of the results of [1]
(Section V), omitting the proofs. We conclude the paper
with an experimental comparison between the dual problem
of [1] and the extended version proposed in this addendum
(Section VI). Our Monte Carlo analysis shows that including
the determinant constraints does not significantly impact the
results, suggesting that these constraints are redundant in
common PGO instances. We provide an intuitive explanation
for this empirical observation in Section VII, and we draw
conclusions in Section VIII.

II. 3D POSE GRAPH OPTIMIZATION

PGO computes the maximum likelihood estimate for n poses
x1, . . . ,xn, given m relative pose measurements x̄ij between
pairs of poses i and j. In a 3D setup, both the unknown poses
and the measurements are quantities in SE(3)

.
= {(R, t) : R ∈

SO(3), t ∈ R3}. We use the notation xi =(Ri, ti) and x̄ij =
(R̄ij , t̄ij) to make explicit the rotation and the translation of
each pose. PGO can be visualized as a directed graph G(V, E),
in which we associate a node i ∈ V={1,. . ., n} to each pose
xi and an edge (i, j)∈E to each relative measurement x̄ij .

We consider the following PGO formulation:

f? = min
{ti∈R3}
{Ri∈SO(3)}

∑
(i,j)∈E

ω2
t ‖tj−ti−Rit̄ij‖2 (PGO)

+
ω2
R

2

∥∥Rj−RiR̄ij

∥∥2

F
(1)

in which we compute the translations {ti ∈ R3} and the
rotations {Ri ∈ SO(3)} by minimizing the residual errors



with respect to the given measurements (R̄ij , t̄ij), ∀(i, j) ∈ E .
In (1), ‖·‖2F is the (squared) Frobenius matrix norm (sum of
the squares of the entries), and ω2

t , ω
2
R are the inverse of the

translation and rotation measurement covariances, which are
assumed isotropic (the derivation of the maximum likelihood
estimator is given in [1]). The norm ‖Ra −Rb‖2F is usually
referred to as the chordal distance between two rotations Ra

and Rb [4]. The main difference between (1) and formulations
in related work is the use of the chordal distance in place of
the commonly used geodesic distance. The chordal distance
has been already proposed in a SLAM context in [5, 6]

The advantage of the formulation (1) is that it has a
quadratic objective function. This facilitates the derivation of
the Lagrangian dual problem (Section IV). Before presenting
the dual, we reformulate (1) in a more convenient form. This
is done in the following section.

III. 3D SLAM AS A QUADRATIC PROBLEM WITH
QUADRATIC EQUALITY CONSTRAINS

In this section, we rewrite (1) in order to (i) have vector
variables (the rotations Ri are matrices), (ii) express the
constraints Ri ∈ SO(3) as quadratic equality constraints, (iii)
anchor one of the poses to the origin of the reference frame
(this is standard in PGO solvers). This reformulation makes
the derivation of the dual problem straightforward.

A. Vectorization

We define ri ∈ R9 as the vectorized version of Ri:
ri

.
= [R

(1)
i R

(2)
i R

(3)
i ]T, where R(k)

i is the kth row of
Ri. We use the shorthand ri = rows(Ri) to obtain the
vector representation ri of a 3 × 3 matrix Ri. Using this
parametrization, each summand in the objective in (1) becomes
(using ‖R‖F = ‖RT‖F in the first expression):

ω2
t ‖tj−ti−Rit̄ij‖2 +

ω2
R

2

∥∥RT
j −R̄T

ijR
T
i

∥∥2

F

= ω2
t ‖tj−ti−Tijri‖2 +

ω2
R

2
‖rj−Qijri‖2 (2)

where Tij
.
= I3 ⊗ t̄Tij ∈ R3×9, Qij

.
= I3 ⊗ R̄T

ij ∈ R9×9, and
⊗ is the Kronecker product.

B. Constraints in PGO

We cannot choose arbitrary vectors ri ∈ R9, but have to
limit ourself to choices of ri that produce meaningful rows of
a rotation matrix Ri ∈ SO(3). The rotation group SO(3) is
defined as SO(3)

.
= {R ∈ R3×3 : RTR = I3,det(R) = 1},

which, written in terms of the rows of Ri, becomes:

RT
i Ri = I3 ⇔ (R

(u)
i )TR

(v)
i =

{
1 if u = v,
0 if u 6= v,

u, v =
1, 2, 3

(3)

det(Ri) = 1 ⇔ R
(1)
i ×R

(2)
i = R

(3)
i (4)

where × denotes the cross product. In other words, the
rows of a rotation matrix have to be orthonormal (3), and

have to satisfy the right-hand rule (4). The orthogonality
constraints (3) can be written in terms of the vector ri:

(R
(u)
i )TR

(v)
i = 0⇔ rTi Euvri = 0 u 6= v, (5)

(R
(u)
i )TR

(u)
i = 1⇔ rTi Euuri = 1 (6)

where Euv is a 9×9 selection matrix composed of 3×3 blocks
that are zero everywhere except the 3 × 3 block in position
(u, v), which is the identity matrix. To facilitate the following
derivation, we include a slack variable y and a constraint:

y2 = 1 (7)

which allows writing (6) equivalently as:

rTi Euuri = 1⇔ rTi Euuri − y2 = 0 (8)

(the derivation is easier if most constraints are homogeneous).
While in the previous work [1] the authors relaxed the

determinant constraint (4), in this paper we show that it is
actually possible to include it in the derivation of the dual
problem. For this purpose, we define eu ∈ R3 as the vector
that is zero everywhere except the u-th entry which is 1, and
we use the following equalities (note that R(k)

i are treated as
column vectors):

R
(1)
i ×R

(2)
i = R

(3)
i ⇔ eTuR

(1)
i ×R

(2)
i = eTuR

(3)
i , u=1,2,3

(using a× b = [a]×b) ⇔ eTu [R
(1)
i ]×R

(2)
i = eTuR

(3)
i ,

(using [a]×b = −[b]×a) ⇔ −(R
(1)
i )T[eu]×R

(2)
i = eTuR

(3)
i ,

(including y) ⇔ −(R
(1)
i )T[eu]×R

(2)
i = yeTuR

(3)
i ,

(using ri) ⇔ rTi Suri + yeT6+uri = 0, (9)

where we assumed that y = 1 (we will comment more on this
in Section III-D), [a]× ∈ R3×3 is a skew-symmetric matrix
built from the entries of a vector a ∈ R3, and where Su is a
9× 9 selection matrix composed of 3× 3 blocks that are zero
everywhere except the 3 × 3 block in position (1, 2), which
is [eu]×; moreover, since the last three entries of ri coincide
with R(3)

i , in (9) we also used eTuR
(3)
i = eT6+uri.

Combining the objective function (2) and the constraints (5),
(7), (8), (9), we rewrite the PGO problem (1) as:

f? = min
{ri,ti}

∑
(i,j)∈E

ω2
t ‖tj−ti−Tijri‖2 +

ω2
R

2
‖rj−Qijri‖2

subject to
rTi Euvri − y2 = 0, u = v
rTi Euvri = 0, u 6= v

rTi Suri + yeT6+uri = 0

 u,v=1,2,3
i=1,...,n

y2 = 1 (10)

In order to write (10) in a more compact matrix notation, we
define the vector x̆ = [tT1 , . . . , t

T
n, r

T
1 , . . . , r

T
n , y]T ∈ R12n+1.

Using this notation, (10) becomes:

f? = min
x̆

‖Ăx̆‖2

subject to
x̆TĔiuvx̆ = 0, u = v

x̆TĔiuvx̆ = 0, u 6= v

x̆T S̆iu x̆ = 0

 u, v = 1, 2, 3
i = 1, . . . , n

x̆T Ŭ x̆ = 1 (11)



where the matrices Ă and Ĕiuv , and S̆iu are obtained by
stacking the coefficient matrices in (10), with suitable zero
blocks for padding, while Ŭ is zero everywhere, except a
single entry in the bottom-right corner, which is equal to 1.

C. Anchoring

Since absolute poses are not observable from relative mea-
surements, we fix a pose to be our reference frame. Without
loss of generality we fix the pose of the first node to the
identity pose (t1 = 03 and R1 = I3, or, equivalently
r1 = rows(I3)). This process is usually called anchoring.

Preserving an objective function that is homogeneous in the
variables is convenient for the derivation of the dual problem;
hence, rather than setting r1 = rows(I3) (which would lead
to a constant terms within the square in the objective), we set
r1 = y rows(I3) (more discussion on this in Section III-D).
Anchoring the first pose modifies (11) as follows:

f? = min
x

‖Ax‖2 (Primal problem)

subject to
xTEiuvx = 0, u = v
xTEiuvx = 0, u 6= v
xT Siu x = 0

 u, v = 1, 2, 3
i = 1, . . . , n− 1

xT U x = 1 (12)

where x ∈ R12(n−1)+1 is obtained by removing the first pose
from x̆, A is obtained by removing from Ă the columns
corresponding to the first pose and adjusting the last column to
accommodate the terms multiplying y (essentially, rows(I3));
Eiuv (resp. Siu, U ) are the same as Ĕiuv (resp. S̆iu, Ŭ ) but
without the rows and columns corresponding to the first pose.

D. Effect of the slack variable y

Observe that the constraint y2 = 1 implies that y = ±1.
Hence, when y=−1, it seems that we get “wrong” constraints:

1) The constraint r1 = y rows(I3) becomes R1 = −I3.
2) The constraint (10) implies det(Ri) = −1 for all i =

1, . . . , n.

However, noting that the objective in (12) is homogeneous,
we can easily see that ‖Ax‖ = ‖ − Ax‖. Hence, we can
change the sign of y and of Ri, i = 1, . . . , n to satisfy the
right constraints without altering the cost. This means that,
without loss of generality, we can assume y = 1. This makes
the constraints in our homogeneous formulation equivalent to
the original ones.

IV. THE DUAL PROBLEM

Standard optimization theory tells us that to every con-
strained optimization problem (called the primal problem), we
can associate a dual problem, and it provides useful results to
relate the two problems [7, 8]. In this section we derive the
Lagrangian dual problem of the primal problem (12).

The first step to derive the dual is to build the Lagrangian:

L(x,λ) = ‖Ax‖2 −
( n−1∑

i=1

∑
u,v=1,2,3

λ⊥iuv x
TEiuvx

)
(13)

−
( n−1∑

i=1

∑
u=1,2,3

λdet
iu xT Siu x

)
− λy

(
xT U x− 1

)
where λ⊥iuv , λdet

iu , and λy are the Lagrange multipliers or
dual variables associated to the orthogonality, determinant,
and y2 = 1 constraints in (12), respectively; we stack all the
dual variables in a vector λ. The Lagrangian can be understood
as a function that includes the objective function in (12) and
penalty terms corresponding to each constraint in (12). We
note that the only difference (besides minor notation changes)
with respect to [1] is the presence of the terms “λdet

iu x
TSiux”,

which are due to the determinant constraints.
To make the notation more compact, we define the matrix:

W (λ)
.
= ATA−

n−1∑
i=1

(∑
u,v=
1,2,3

λ⊥iuvEiuv+
∑
u=

1,2,3

λdet
iu Siu

)
−λyU (14)

Using W (λ) we write the Lagrangian succinctly as:

L(x,λ) = xTW (λ)x+ λy (15)

The dual function d(λ) is the infimum of the Lagrangian
with respect to x:

d(λ) = inf
x
L(x,λ) = inf

x
xTW (λ)x+ λy (16)

For any choice of λ the dual function provides a lower bound
for the optimal value of the primal problem [7, Section 5.1.3].
Therefore, the Lagrangian dual problem looks for a maximum
of the dual function over λ:

d?
.
= max

λ
d(λ) = max

λ
inf
x
xTW (λ)x+ λy (17)

The infimum over x of L(x,λ) drifts to −∞ unless
W (λ) � 0. Therefore we can safely restrict the maximization
to vectors λ that are such that W (λ) � 0; these are called
dual-feasible. Moreover, at any dual-feasible λ, the x mini-
mizing the Lagrangian are those that make xTW (λ)x = 0
(recall that xTW (λ)x cannot be negative when W (λ) � 0).
Therefore, (17) reduces to the following dual problem

d? = max
λ

λy, (Dual problem)

s.t.: W (λ) � 0.
(18)

The importance of the dual problem is twofold. First, it holds

d? ≤ f? (19)

This property is called weak duality, see, e.g., [7, Section
5.2.2]. For particular problems the inequality (19) becomes an
equality, and in such cases we say that strong duality holds.
The difference between f? and d? is called duality gap and,
by (19), the gap is always positive.

The second important property of the Lagrangian dual prob-
lem (18) is that, since d(λ) is concave (point-wise minimum



of affine functions), the dual (18) is always convex in λ,
regardless the convexity properties of the primal problem. The
dual PGO problem (18) is a semidefinite program (SDP) and
we can compute the optimal solution λ? of (18) using off-the-
shelf solvers, e.g., [9, 10]. In the following section we discuss
the relations between the primal and the dual problem, and
elucidate on the practical use of the dual.

V. RELATION BETWEEN THE PRIMAL AND
THE DUAL PROBLEM AND PRACTICAL USE

In this section we provide a more practical view of the
results of [1], applying them to the extended formulation
proposed in this addendum. We do not give proofs, since the
inclusion of the determinant constraints only added extra terms
in the definition of the matrix W (λ), hence the proof of the
results stated here remains identical to the ones given in [1].

As stated in the introduction, our objective is two-fold. We
want to design verification techniques and possibly find glob-
ally optimal solutions for PGO. Let us start with verification.

Verification. Assume that we computed an estimate for the
poses in the pose graph, namely (R̂i, t̂i), i = 1, . . . , n, using a
state-of-the-art iterative solver, e.g., iSAM2 [11] or g2o [12].
Then we want to ask a basic question: can we quantify how far
is this estimate from the global minimum of the cost function,
and possibly certify its optimality?

We call this candidate solution x̂, assuming that the poses
(R̂i, t̂i), i = 1, . . . , n, have been “vectorized” as in Section III.
The following result provides a first tool for verification.

Proposition 1 (Verification of Primal Objective): Given a
candidate solution x̂ for the primal problem (12), and call-
ing d? the optimal objective of the dual problem (18), if
f(x̂) = d?, then the duality gap is zero and x̂ is an optimal
solution of (12). Moreover, even if the duality gap is nonzero,
f(x̂)− d? ≥ f(x̂)− f?, meaning that f(x̂)− d? is an upper-
bound for the sub-optimality gap of x̂.

Proposition 1 (cf. [1, Proposition 2]) ensures that the candi-
date x̂ is optimal when f(x̂) = d?. Moreover, even in the case
in which we get f(x̂) > d?, the quantity f(x̂) − d? can be
used as an indicator of how far x̂ is from the global optimum.

Our derivation also enables a more sophisticated verification
technique. This technique, given in Proposition 3, is based on
the following result (cf. [1, Lemma 1 and Proposition 3]).

Lemma 2 (Primal optimal solution and zero duality gap):
If the duality gap is zero (d? = f?), then any primal optimal
solution x? of (12) is in the null space of the matrix W (λ?),
where λ? is the solution of the dual (18), i.e., W (λ?)x? = 0.

Proposition 3 (Verification of Primal Optimal Solution):
Given a candidate solution x̂ for the primal problem (12), if
the solution λ̂ of the linear system

W (λ̂)x̂ = 0 (to be solved w.r.t. λ̂) (20)

is such that W (λ̂) � 0 and d(λ̂) = f(x̂), then the duality
gap is zero and x̂ is a primal optimal solution.

This second verification technique is more convenient in
practice, since it does not require solving the SDP (18), but

only requires solving a sparse linear system and then verifying
that the sparse matrix W (λ̂) is positive definite (this can be
checked by computing the smallest eigenvalue of W (λ̂)).

Optimal solution. In [1], it has been shown that, when the
duality gap is zero, we can compute a guaranteed, globally op-
timal solution to PGO. The result stems directly from Lemma
2 and can be stated as follows (cf. [1, Proposition 5]).

Proposition 4: If the duality gap is zero and λ? is an
optimal solution of (18), then an optimal solution x? of (12)
can be computed by solving the following linear system:

W (λ?)x? = 0 (to be solved w.r.t. x?) (21)

where the last entry in x? (corresponding to y) is fixed to 1.

Despite the appeal of having a (non-iterative) technique that
computes a globally optimal solution for SLAM, the current
use of (21) is pretty limited, as the computation of x? requires
to compute λ? by solving the SDP (18). While SDPs are
convex problems (hence can be solved in polynomial time),
current SDP solvers are fairly slow and do not scale to large
problems, as the ones usually encountered in SLAM.

VI. EXPERIMENTS

Section V shows that when the duality gap is zero we are
able to provide strong results on 3D PGO: we are able to
design fast verification techniques that do not require solving
the SDP underlying the dual problem (Proposition 3), and we
can compute provably optimal solutions (Proposition 4).

In [1] we showed that the duality gap is zero in many
large-scale real SLAM problems. Moreover, we provided a
Monte Carlo analysis that highlights the influence of different
parameters (noise level, number of poses) on the duality gap.

The goal of this experimental section is to compare the
results of [1] and the extended formulation proposed in this
addendum, and check if the addition of the determinant con-
straints “enlarged” the domain in which the duality gap is zero.
We do this comparison on the same simulation setup of [1]. We
use the cube dataset of Fig. 1(b4). In this dataset, the odometric
trajectory is simulated as the robot travels on a 3D grid
world, and random loop closures are added between nearby
nodes, with probability 0.3. Relative pose measurements are
obtained by contaminating the true relative poses with zero-
mean Gaussian noise, with standard deviation σT and σR for
the translational and rotational noise, respectively. Statistics
are computed over 10 runs: for each run we create a cube
with random connectivity and random measurement noise.

In our experiments we compute the “optimal” solution
f? of (1) by refining the chordal initialization of [5, 13]
with 10 Gauss-Newton (GN) iterations. While one cannot
guarantee a priori that this approach always produces the
optimal estimate, using the results of this paper we will be
able to check optimality a posteriori. For the solution of the
dual problem (18), we use SDPA [10]. The solver returns the
dual optimal objective d? and the dual optimal variables λ?.

Duality gap. Here we compare the value of the primal
optimal objective f?, against the value of the dual optimal
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Fig. 1: (a1)-(a3): comparison between f?, d? (eq. (18)), and d?
[1]

[1, eq. (22)], for different levels of translation noise σT (first column), rotation noise σR
(second column), and size of the problem (third column). (a4): CPU time required to solve the SDP in (18) (dashed blue line) and in [1, eq. (22)] (solid
red line). (b1)-(b3): comparison between f?, the primal optimal solution computed according to Proposition 4 (“dual”), and the primal solution computed as
in [1, Proposition 5] (“dual [1]”), (b4): cube dataset used for the Monte Carlo simulations.

objective d? in (18), and the dual objective of the relaxed
formulation in [1, eq. (22)], which we denote as d?[1]. Fig. 1(a1)
shows d?[1], d

?, and f? for different translational noise levels,
fixing σR = 0.05rad. The figure shows that d?[1] = d? = f?

(zero duality gap) independently on the translational noise. The
duality gap was already observed to be zero using the formu-
lation [1], hence the inclusion of the determinant constraints
does not imply particular benefits. The same conclusion can
be drawn from Fig. 1(a3), which compares d?[1], d

? and f?

for different sizes of the cube dataset, fixing σR = 0.05rad
and σT = 0.1m. Again, d?[1] = d? = f? (zero duality gap)
independently of the size of the dataset, hence the relaxed
formulation [1] already performed well.

Fig. 1(a2) shows d?[1], d
?, and f? for different rotational

noise, fixing σT = 0.1m. In this case the duality gap f?−d? is
more sensitive to the noise level, and for large rotational noise
both d?[1] and d? become smaller than f?. While d? is slightly
better (i.e., larger) than d?[1], the difference is small, and the
inclusion of the determinant constraints does not significantly
enlarge the domain in which the duality gap is zero.

Fig. 1(a4) reports the average CPU time required to solve
the SDP in eq. (18) (dashed blue line) and the SDP in [1,
eq. (22)] (solid red line). Interestingly, the computation cost of
solving the complete dual problem (including the determinant
constraints) is slightly smaller than the cost of the relaxed
formulation [1]. Therefore, the inclusion of the determinant
constraints does not imply an extra computational burden.

Primal optimal solution via the dual. In this paragraph
we compare the performance of the primal optimal solution
computed according to Proposition 4 against the primal solu-
tion computed according to [1, Proposition 5]. Recall that the

two formulations only differ by the extra terms we included in
the matrix W (λ?) and which correspond to the determinant
constraints. The ideal outcome of our analysis is that the
extended formulation performs better, since it can find more
instances in which the duality gap is zero and Proposition 4 is
guaranteed to produce an optimal solution. Unfortunately, the
following experiments show that this is not the case.

Figs. 1(b1)-(b3) compare the cost of the solution obtained
from (i) Proposition 4 (label: “dual”), (ii) Proposition 5 in [1]
(label: “dual [1]”), and the primal solution f?. Fig. 1(b1)
and Fig. 1(b3) compare the costs for increasing levels of
translational noise and dataset size, respectively. We can see
that the bars corresponding to the two dual problems lead
to very similar costs, hence there is no clear advantage in
including the determinant constraints in the formulation. We
attribute the small mismatch between the heights of the bars on
the left of Fig. 1(b1) to numerical errors, as inaccuracies in the
solution of the SDP (18) (which may depend on the stopping
conditions used in SDPA [10]) propagate to the primal solution
computed according to Proposition 4.

Fig. 1(b2) compares the costs for increasing levels of
rotation noise. In this case we see that the bars corresponding
to the two dual problems become larger than f? (i.e., they
produce suboptimal solutions) for rotation noise larger than
0.1rad; this corresponds to the noise levels for which the
duality gap becomes non-zero (cf. Fig. 1(a2)); indeed, when
the duality gap is non-zero, the results in Proposition 4 and [1,
Proposition 5] do not apply, hence we may get suboptimal so-
lutions. Interestingly, the suboptimal solutions of Proposition 4
(which includes the determinant constraints) have larger cost
with respect to the relaxed formulation [1, Proposition 5].



We conclude this section by remarking that, using Proposi-
tion 3, we can classify a candidate solution (e.g., distinguish
optimal versus suboptimal estimates) whenever the duality gap
is zero. To evaluate the efficacy of this classification, in [1], we
provided an empirical analysis of the relaxed formulation by
reporting precision-recall curves. We repeated the same tests
for the extended formulation of this paper and we obtained
exactly the same precision-recall curves, which essentially
means that whenever the complete formulation proposed in
this paper succeeded to certify optimality, also the relaxed
formulation [1] was able to correctly classify the candidate.
This again confirms that the introduction of the determinant
constraints does not have significant impact in practice.

VII. DISCUSSION

Our results seem to suggest that the inclusion of the determi-
nant constraints, in practical instances of PGO, do not provide
any significant advantage from the point of view of the duality
gap. This, in turn, implies that the determinant constraints
are not active at the optimal (primal) solution, and that the
orthogonality constraints are sufficient to define the optimal
solution. We argue that this is due to the fact that, in practical
instances of the problem (in which rotation measurement noise
is reasonably small) one cannot obtain better solutions by
flipping the sign of some rotations and turning them into
reflections. Intuitively, this would happen only with highly
self-inconsistent sets of measurements which contain a large
number of outliers (for which the least-squares formulation in
(1) might be not suitable). Nonetheless, our analysis shows
that the relaxation of the determinant constraints, in practice,
is not the determining factor to cause a non-zero duality gap.

VIII. CONCLUSION

This technical addendum shows how to include determinant
constraints in the derivation of the dual SLAM problem,
originally proposed in [1]. Determinant constraints can be
formulated as quadratic equality constraints and do not funda-
mentally alter the structure of the primal and dual problem. As
such, the results given in [1] apply to the extended formulation
proposed in this paper without any significant modification.

While this extension completes the derivation given in [1],
current experiments do not highlight any tangible advantage
from adding the determinant constraints: the range of oper-
ation in which the duality gap is empirically zero remains
practically the same for both formulations. We conclude that
the relaxation of the determinant constraints is not a cause of
failures in the certification of optimality.

Future work includes performing further numerical evalua-
tions (e.g., using datasets corrupted by outliers), and investi-
gating alternative methods to reduce/quantify the duality gap.
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