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Abstract—Many online inference problems in robotics and AI
are characterized by probability distributions whose factor graph
representations are sparse. While there do exist some compu-
tationally efficient algorithms (e.g. incremental smoothing and
mapping (iSAM) or Robust Incremental least-Squares Estimation
(RISE)) for performing online incremental maximum likelihood
estimation over these models, they generally require that the
distribution of interest factors as a product of Gaussians, a
rather restrictive assumption. In this paper, we investigate the
possibility of performing efficient incremental online estimation
over sparse factor graphs in the non-Gaussian case. Our main
result is a method that generalizes iSAM and RISE by remov-
ing the assumption of Gaussian factors, thereby significantly
expanding the class of distributions to which these algorithms
can be applied. The generalization is achieved by means of a
simple algebraic reduction that under relatively mild conditions
(boundedness of each of the factors in the distribution of
interest) enables an instance of the general maximum likelihood
estimation problem to be reduced to an equivalent instance of
least-squares minimization that can be solved efficiently online
by application of iSAM or RISE. Through this construction
we obtain robust, computationally efficient, and mathematically
correct incremental online maximum likelihood estimators for
non-Gaussian distributions over sparse factor graphs.

I. INTRODUCTION

Many online inference problems in robotics and AI are
characterized by probability distributions whose factor graph
representations are sparse; for example, both bundle adjust-
ment [6], [25] and the smoothing formulation of simultane-
ous localization and mapping (SLAM) [23], [24] belong to
this class. Online maximum likelihood estimation over these
models corresponds to solving a sequence of maximization
problems in which the objective function is a product to which
additional factors are appended over time. In practice, these
problems are often solved by computing each estimate in
the sequence as the solution of an independent maximization
problem using standard iterative numerical techniques. While
this approach is general and produces good results, it is
computationally expensive, and does not exploit the sequential
nature of the underlying inference problem; this limits its
utility in real-time online applications, where speed is critical.

In previous work [20] Rosen et al. developed Robust
Incremental least-Squares Estimation (RISE), an improved
version of incremental smoothing and mapping (iSAM [9],
[10]) obtained by incrementalizing the Powell’s Dog-Leg trust-
region method [18], to efficiently solve the online maximum
likelihood estimation problem for the special case in which the
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Fig. 1. Examples of common probability density functions. While the
assumption of additive Gaussian noise is ubiquitous in robotics and computer
vision applications, in reality system noise often follows a non-Gaussian
distribution. Gaussian models are particularly ill-suited for approximating
heavy-tailed distributions like the Cauchy distribution or asymmetric, one-
sided distributions like the exponential. The unprincipled use of Gaussian
models in the presence of such perturbations can lead to poor system perfor-
mance or outright failure. Achieving robust long-term autonomy requires the
development of computationally efficient online inference methods that are
able to correctly address non-Gaussian error distributions.

distribution of interest factors as a product of Gaussians. In
this special case, maximum likelihood estimation is equivalent
to minimizing a sum of squared measurement errors. RISE
and its predecessor iSAM achieve efficient computation in
this case by exploiting structural properties of sequential least-
squares minimization (namely, an efficient mechanism for
updating a sparse QR decomposition of the Jacobian of the
error residual function, cf. [20, Sec. 3]) to produce a direct
update to the previously computed estimate when new data
arrives, rather than recomputing a new estimate from scratch.
This incremental approach enables iSAM and RISE to achieve
computational speeds unmatched by iterated batch techniques
(such as the popular Levenberg-Marquardt) while producing
solutions of comparable accuracy.

However, while the assumption of additive Gaussian noise
is ubiquitous in robotics and computer vision due to its com-
putational expedience, in reality there are many distributions
that arise in practice (e.g. the exponential [2], [21] or Cauchy
[15] distributions) that are not at all well-modeled as Gaussians
(Fig. 1). Multi-modal, asymmetric, or one-sided distributions
like the exponential are difficult to capture with a unimodal,
symmetric, and everywhere-nonzero Gaussian model. Heavy-
tailed distributions like the Cauchy distribution are particularly
pernicious; while the Cauchy and Gaussian distributions may
appear visually quite similar, their tail behaviors differ so rad-
ically that performing estimation in the presence of Cauchy-
distributed noise using a Gaussian model is essentially hope-
less. Clearly, achieving practical robust long-term autonomy
in the presence of these kinds of perturbations requires the
development of efficient online inference methods that do not
depend upon the Gaussian assumption.



Unfortunately, the incrementalization procedure used to
obtain iSAM and RISE from the Gauss-Newton and Powell’s
Dog-Leg optimization methods (respectively) depends cru-
cially upon the appearance of the Jacobian in these algorithms,
which are restricted to sum-of-squares objective functions; it
does not extend to the more general Newton-type optimization
methods, where the Jacobian is replaced by the Hessian.

To that end, in this paper we consider an alternative ap-
proach for generalizing iSAM and RISE beyond the Gaus-
sian case: rather than generalizing the optimization methods
themselves beyond quadratic cost functions, we instead show
how to reduce an instance of the general maximum likelihood
estimation problem to an equivalent instance of least-squares
minimization, which can then in turn be solved efficiently
online by direct application of iSAM or RISE. Through this
construction we obtain robust, computationally efficient, and
mathematically correct incremental online maximum likeli-
hood estimators for non-Gaussian distributions over sparse
factor graphs.

II. GENERALIZING ISAM/RISE

In this section we generalize iSAM and RISE by removing
the assumption of Gaussian factors. This generalization is
achieved by means of Theorem 1, which provides a method for
reducing an instance of maximization of a product of functions
to an equivalent instance of least-squares minimization that can
be solved efficiently online by application of iSAM or RISE.

A. Maximum likelihood estimation in factor graphs

A factor graph is a bipartite graph G = (F ,Θ, E) with two
node types: factor nodes fi ∈ F (each representing a real-
valued function) and variable nodes θj ∈ Θ (each representing
an argument to one or more of the functions in F). Every real-
valued function f : Ω → R has a corresponding factor graph
G encoding its factorization as

f(Θ) =

m∏
i=1

fi(Θi),

Θi = {θj ∈ Θ | (fi, θj) ∈ E} .
(1)

If a function p : Ω→ R that factors as in equation (1) is a
probability distribution, then maximum likelihood estimation
corresponds to finding the value Θ∗ that maximizes (1):

Θ∗ = argmax
Θ∈Ω

p(Θ) = argmax
Θ∈Ω

m∏
i=1

pi(Θi). (2)

B. Reducing maximization of a product of functions to an
equivalent instance of least-squares minimization

The extension of iSAM and RISE to the problem of general
maximum likelihood estimation (2) is achieved by means of
the following theorem, which shows that under relatively mild
conditions (namely, boundedness and positivity of the factors),
maximization of a product of functions is equivalent to an
instance of least-squares minimization.

Theorem 1 (Reducing MLE to least-squares minimization):
Let f : Ω→ R be a function that factors as

f(x) =

m∏
i=1

fi(x), (3)

and suppose that fi > 0 and ‖fi‖∞ < ∞ for all 1 ≤ i ≤ m.
Fix constants ci ∈ R such that ci > ‖fi‖∞ and define

ri : Ω→ R
ri(x) =

√
ln ci − ln fi(x)

(4)

for all 1 ≤ i ≤ m. Then

argmax
x∈Ω

f(x) = argmin
x∈Ω

m∑
i=1

ri(x)2. (5)

Proof: Define

f̃i(x) =
1

ci
· fi(x).

Then f̃i > 0 and ‖f̃i‖∞ < 1 for all 1 ≤ i ≤ m, and

argmax
x∈Ω

f(x) = argmax
x∈Ω

m∏
i=1

fi(x)

= argmax
x∈Ω

m∏
i=1

f̃i(x)

= argmax
x∈Ω

m∑
i=1

ln f̃i(x)

= argmin
x∈Ω

m∑
i=1

− ln f̃i(x).

(6)

Since 0 < f̃i(xi) < 1, then − ln f̃i(x) > 0, and therefore the
function ri : Ω→ R specified by

ri(x) =

√
− ln f̃i(x) =

√
ln ci − ln fi(x) (7)

is well-defined for all 1 ≤ i ≤ m. Substitution of (7) into the
final line of (6) proves the result.

C. Application to online maximum likelihood estimation over
sparse factor graphs

In this subsection we show how to apply Theorem 1 to the
probability distribution p in (2).

So far, everything that we have said has been perfectly
general; henceforward, we will assume that Ω ⊆ Rn, that
p is a probability density function on Ω, and that pi ∈ C1(Ω)
(so that we can apply gradient-based optimizers such as iSAM
and RISE) and satisfies the hypotheses of Theorem 1 for all
1 ≤ i ≤ m (we will discuss how restrictive these assumptions
are as a practical matter in Section III). Under these conditions,
we may apply the reduction given in Theorem 1 to obtain the
equivalent maximum likelihood estimate Θ∗ as

Θ∗ = argmin
Θ∈Ω

m∑
i=1

ri(Θi)
2 = argmin

Θ∈Ω
‖r(x)‖2 (8)

for r : Ω→ Rm.



Note that each of the factors pi of p in (2) gives rise to a
corresponding summand ri in the least-squares minimization
(8) by means of equation (4); consequently, performing on-
line inference, in which new measurements become available
(equivalently, in which new factor nodes are added to G)
over time, corresponds to solving a sequence of minimization
problems of the form (8) in which new summands are added
to the objective function over time. If G is sparse, then the
corresponding sequential least-squares minimizations (8) are
likewise sparse. By this construction, we thus reduce the
general problem of sequential maximum likelihood estimation
over sparse factor graphs (2) to an equivalent instance of
sequential sparse least-squares minimization (8), which can
be solved efficiently online by application of iSAM or RISE.

III. HOW RESTRICTIVE ARE THE HYPOTHESES OF
THEOREM 1?

The method of generalizing iSAM/RISE developed in Sec-
tion II depends upon the application of Therorem 1; conse-
quently, this generalization only extends as far as does The-
orem 1 itself. In this section, we consider the restrictiveness
of the hypotheses of Theorem 1, and show that (at least as a
practical matter) they in fact hold with great generality.

To see this, suppose that the function p defined by (2) is
a probability distribution. Since p ≥ 0, the positivity hypoth-
esis of Theorem 1 can always be satisfied, if necessary by
restricting attention to the open set Ω̊ = {x ∈ Ω | p(x) > 0}
(which contains all of the physically relevant points in the
distribution’s domain). If each of the factors pi additionally
happens to be bounded on Ω (which will always be the case
if Ω is compact), then the reduction proceeds.

Furthermore, we also claim that even in cases where some
of the factors pi may be unbounded, it will often be possible
to produce a reasonable approximation to which Theorem 1
does apply. This approximation is straightforward: it simply
consists of the recognition that, for many problems of interest
in science and engineering, there is a (perhaps very large)
bounded set of physically plausible values within which the
parameters to be estimated ought to fall. For example, when
estimating the location of a robotic ground vehicle, it is
entirely reasonable to restrict attention to the surface of the
Earth, even though the formal probability density function
describing the vehicle’s location may have nonzero (albeit very
very small) amplitude in the vicinity of, say, Saturn.

More formally, if it is possible to use a priori knowledge
of the problem at hand to restrict attention to a (possibly very
large) compact set C ⊆ Ω, then the fact that pi ∈ C1(Ω)
implies that pi is bounded on C for all 1 ≤ i ≤ m,
and therefore Theorem 1 applies to p|C . Furthermore, if the
probability distribution that we wish to maximize happens to
be the posterior distribution for a parameter with known prior
p0 (as in Bayesian inference), then given any ε > 0, we can
always find a compact set C ⊆ Ω such that 1 − p0(C) < ε,
i.e., such that the prior probability that the true parameter value
lies outside of C (hence will be missed by estimation over the
restricted function p|C) will be less than ε. In other words,

this method admits the direct control of the tightness of the
approximation (as measured by ε) through the selection of the
compact set C.

Finally, we also observe that although Theorem 1 requires
the identification of an upper bound ci for each factor pi, this
bound need not be tight (although tighter choices of ci do give
rise to better numerical properties in the algorithm). This is
also quite convenient, as it is often the case in practice that
it is difficult or impossible to provide a closed-form analytic
solution for the absolute maximum of a given function, but
relatively easy to produce at least a coarse upper bound.

Thus, we see that the hypotheses of Theorem 1 are suffi-
ciently mild (when coupled with some physically motivated
yet still principled approximation, if necessary) to admit its
application to a wide variety of problems of interest.

IV. EXPERIMENTAL RESULTS

In this section we illustrate the utility of the newly-
generalized RISE algorithm by comparing its performance
with that of its predecessor (Gaussian-only RISE) on two
example applications inspired by marine robotics.

A. Example application: Measuring acoustic time-of-flight

We first consider a relatively straightforward estimation
problem from marine robotics in order to highlight the in-
sufficiency of the Gaussian assumption in the general case.

The underwater environment is extremely acoustically
noisy; so much so, in fact, that it has been hypothesized
that time-of-flight measurement errors in long-baseline (LBL)
underwater localization systems may follow a Cauchy distri-
bution [15]. Suppose that this is so, and consider a perfectly
stationary autonomous underwater vehicle (AUV) attempting
to measure the acoustic time-of-flight to a particular sonar
beacon through repeated interrogation.

Mathematically, this corresponds to the simplest possible
inference problem: estimating the value of an unknown param-
eter a given a sequence YN = (y1, . . . , yN ) of measurements
corrupted by additive i.i.d. noise. We suppose that this noise
is generated by a Cauchy distribution, so that

yi = a+ ei, ei ∼ C(x0, γ) ∀1 ≤ i ≤ N (9)

where here we use the notation X ∼ C(x0, γ) to indicate that
the random variable X follows a Cauchy distribution with
location parameter x0 and shape parameter γ, corresponding
to the probability density function

pX(x;x0, γ) =
1

πγ

[
1 +

(
x−x0

γ

)2
] . (10)

Now if we are restricted to using only Gaussian models for
inference (as we are in the case of vanilla iSAM or RISE),
then the best that we can do in this case is to model the noise
process (9) as x0-mean Gaussian. Given the sequence YN , the
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Fig. 2. Estimation of an unknown parameter: This plot shows the maximum
likelihood estimates for the parameter a as a function of the number of
observations yi sampled from (9) for x0 = 0, γ = 1, and a = 5. The red
line corresponds to the estimator âGML in (11) obtained under the Gaussian
assumption, while the blue line corresponds to the incrementalized estimator
âCML obtained from equation (13) using the method of Section II-C and
run online using RISE2. The dashed green line shows the true value of the
parameter a.

maximum likelihood estimator âGML for a under this Gaussian
assumption is then just the x0-translated sample mean:

âGML(YN ) =
1

N

N∑
i=1

yi − x0. (11)

Let us consider the performance of the estimator (11). We
observe that since each of the yi are random variables, then
so is âGML itself; furthermore, since we know the distribution
(9) from which the yi are sampled, we can compute the
distribution for âGML. Using the fact that âGML(YN ) is a linear
combination of the i.i.d. random variables yi [17, Secs. 4.4
and 5.4] together with a little algebra [1] shows that

âGML ∼ C(a, γ). (12)

Equation (12) shows that the distribution for the estima-
tor âGML for a derived under the Gaussian assumption is
independent of the number of observations yi collected. In
other words, no matter how much data is accumulated, the
uncertainty in the estimate âGML will never decrease (in
particular, the estimator âGML is inconsistent).

On the other hand, consider the maximum likelihood esti-
mator âCML for a obtained using the correct (Cauchy) noise
model from (9):

âCML(YN ) = argmax
x∈R

1

γNπN

N∏
i=1

[
1 +

(
yi − x− x0

γ

)2
]−1

.

(13)
In contrast to âGML, this estimator is consistent, asymptotically
normal, and its variance scales asymptotically as 1/N [3]
(as we would hope, since this is the mathematically correct
maximum likelihood estimator).

Now we compare the performance of these two estimators in
practice. For this experiment we sampled 10000 observations
from the distribution (9) with x0 = 0, γ = 1, and a = 5. This
data set was processed twice: once using the estimator âGML

defined in (11), and again using the incrementalized estimator
âCML obtained from equation (13) using the method of Section
II-C and run online using the RISE2 [20] implementation

in Georgia Tech’s GTSAM library (version 2.0.0, available
through https://collab.cc.gatech.edu/borg/gtsam/) with the de-
fault settings. The resulting estimates are shown in Fig. 2 as a
function of the number of samples observed. We can clearly
see that while the correct estimator âCML implemented using
the method of Section II-C converges rapidly to the true value
as expected (Fig. 2(a)), the estimator âGML obtained under the
Gaussian assumption shows no convergence towards the true
value whatsoever, as predicted by (12) (Fig. 2(b)).

The failure of the Gaussian estimator âGML to produce
a good estimate for a is due to the fact that the Cauchy
distribution (10) is fat-tailed; that is, its density pX satisfies

lim
x→±∞

(
|x|α+1 · pX(x)

)
= 1 for some 0 < α < 2.

Distributions of this type do not have well-defined variances
(intuitively, they have infinite variances), and therefore their
sample averages do not satisfy the hypotheses of the classical
central limit theorem (that is, the distribution of their sample
averages is not asymptotically normal). There is a generaliza-
tion of the classical central limit theorem due to Gnedenko
and Kolmogorov [5] which implies that sample averages of
i.i.d. variables drawn from a fat-tailed distributon with a
given α parameter will converge to a member of the Lévy
α-stable family having the same α parameter; this explains
why âGML is Cauchy-distributed, as the Cauchy distributions
are members of the α-stable family with α = 1. However,
fat-tailed distributions do not have well-defined means for
α ∈ (0, 1]. Thus, while the stability property (12) of the
estimator âGML is a special consequence of the fact that the
observations in this case are drawn from a Cauchy distribution,
the failure of convergence of the Gaussian estimator âGML

is generic: this failure will occur whenever observations are
sampled from a fat-tailed distribution with α ≤ 1 simply
because, in those circumstances, the underlying distribution
has no mean for the sample average to converge to. Even
assuming that α > 1, in which case the estimator âGML has a
well-defined expectation, its variance will still be infinite for
α < 2, rendering it unsuitable for use as a practical matter.

In contrast, mathematically correct maximum likelihood
estimators are consistent (i.e. will converge in probability to
the correct result as N → ∞) and asymptotically normal
in the general case under reasonably mild conditions, with
(co)variance scaling asymptotically as 1/N (cf. Theorems 17
and 18 in [4] for details).

B. Example application: Underwater SLAM

The simplicity of the example application in Section IV-A
was designed to highlight the mathematical underpinnings of
the insufficiency of the Gaussian assumption in the general
case. In this section, we consider a more realistic example of
how the method of Section II-C would be applied in practice.

For this experiment we consider an AUV searching the
bottom of a channel for targets of interest. We assume that
the AUV is equipped with a forward-looking sonar (with a
maximum effective range of 40 meters and a horizontal field
of view of 90 degrees) and an inertial measurement unit (IMU)

https://collab.cc.gatech.edu/borg/gtsam/


(a) Nominal Gaussian model ps

(b) Optimal Gaussian model pg

(c) Mixture model pr

Fig. 3. Estimated AUV trajectory and sonar target locations (blue) versus
ground truth (red) for each of the sonar ranging error density estimates. (a)
Estimate obtained using the nominal Gaussian model ps (median sonar target
positioning error: 3.29 m). (b) Estimate obtained using the optimal Gaussian
model pg (median sonar target positioning error: .453 m). (c) Estimate
obtained using the mixture model pr (median sonar target positioning error:
.126 m). Note the superior sharpness/fine detail of (c) versus (b). The grid
spacing is 50 m.

and Doppler velocity log (DVL) for ego-motion estimation.
We further suppose that there are 75 sonar targets uniformly
randomly distributed over the AUV’s area of operation, and
that the AUV searches for these by following a standard
lawnmower search pattern at a depth of 7 meters (cf. Fig. 3).
The AUV emits sonar pings at regular intervals (once for every
2.5 meters traveled) and simultaneously produces an estimate
of its ego-motion (translation and rotation) since the previous
ping by integrating its IMU and DVL measurements.

We simulate sensor errors as follows. Errors in the AUV’s
ego-motion estimate are Gaussian and mean-zero, with a
standard deviation of .02 m along each translational axis and
1 degree standard deviation in heading. The error in the sonar
receiver is also modeled as mean-zero Gaussian noise, with
a standard deviation of σr = .1 m in range and 1 degree in
bearing. We also simulate errors in the detection process: every
time the AUV emits a ping, any target within the sonar’s field
of view is only detected with probability .8, and each detection
originates from a multipath reflection off the water’s surface
with probability M = .25.

Let us consider the probability density function pr for the
error in the sonar’s range measurement. According to the

above description, pr is formally given by:

pr(x) = (1−M) · ps(x)︸ ︷︷ ︸
internal receiver ranging error

+ M · (ps ∗ pm)(x)︸ ︷︷ ︸
sum of internal and multipath errors

,

(14)
where

ps(x) =
1√

2πσr
exp

(
− x2

2σ2
r

)
(15)

is the density for the ranging error due to the sonar receiver
itself, and pm is the probability density function describing
the distribution of range errors due to multipath reflection.
While we do not know the explicit closed-form pdf for pm,
we do at least know that it is supported on [0,∞) (since the
multipath path length always exceeds the true range to target),
and we may draw samples from this distribution by running
our previously described simulator. Therefore, we appeal to
the principle of maximum entropy [8], [22], and model pm
as the maximum entropy distribution p̂m supported on [0,∞)
with mean and variance equal to the sample mean µm and
sample variance σ2

m for a set of multipath reflection errors
sampled from the sonar simulator. Standard techniques from
the calculus of variations then show that p̂m has the parametric
form:

p̂m(x) =

{
c exp

(
−λ1x− λ2x

2
)
, x ≥ 0,

0, x < 0,
(16)

where the parameters c, λ1, and λ2 are chosen so that p̂m is
properly normalized and has mean µm and variance σ2

m.
Given (15) and (16), we may compute the closed form for

the convolution in (14):

(ps ∗ p̂m)(x) =
c

2
√

1 + 2λ2σ2
r

(
1 + erf

(
x− λ1σ

2
r

σr
√

2 + 4λ2σ2
r

))

· exp

(
−2λ2x

2 − 2λ1x+ λ2
1σ

2
r

2 + 4λ2σ2
r

)
.

(17)

Equations (15) and (17) together completely specify the pdf
pr that we will use to model the sonar’s ranging error.

Now obviously pr is non-Gaussian. But what if we are
restricted to use only Gaussian models, as in the case of vanilla
iSAM/RISE? One common approach is simply to use the
nominal sonar model ps in (15), completely disregarding the
possibility of multipath errors. A better model pg (indeed, the
information-theoretically optimal Gaussian model) is obtained
by moment-matching the mean and variance of a sample of
ranging errors drawn from the complete (i.e. internal receiver
and multipath) sonar error distribution.

To determine the models used in the experiment, 4000
multipath reflection errors were drawn from the sonar error
simulator described above, and the sample mean µm = 4.03
and variance σ2

m = 3.27 determined. The parameter values
for the maximum entropy distribution p̂m in (16) with these
moments were then determined numerically in MATLAB,
producing c = 2.59 × 10−2, λ1 = −1.07, λ2 = .136;
this data determines the complete mixture model pr in (14)
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Fig. 4. Sonar ranging error models used in this experiment. (a) The maximum entropy density p̂m used to estimate the multipath ranging error density
(obtained by sampling 4000 multipath ranging errors from the sonar error simulator) together with the histogram density estimate. (b) The three models used
to estimate the complete (internal and multipath) sonar ranging error density: the mixture model pr (cyan, determined by the maximum entropy density p̂m
shown in (a)), the optimal Gaussian model pg (green, obtained by moment-matching a sample of 16000 sonar ranging errors drawn from the complete sonar
error simulator), and the nominal Gaussian model ps (red), as well as the histogram density estimate. (c) The cost functions r2i (x) obtained by applying
Theorem 1 to the sonar ranging error density estimates shown in (b).

Mean (m) Median (m) Max (m) Standard deviation (m)
Mixture model pr .179 .126 1.34 .191

Optimal Gaussian model pg .532 .453 1.32 .281
Nominal Gaussian model ps 3.91 3.29 17.6 2.89

TABLE I
FINAL LANDMARK POSITIONING ERRORS

Mean (m) Median (m) Max (m) Standard deviation (m)
Mixture model pr .237 .168 1.57 .240

Optimal Gaussian model pg .521 .419 2.21 .394
Nominal Gaussian model ps 4.30 3.23 20.9 3.72

TABLE II
FINAL AUV POSITIONING ERRORS

Mean (sec) Median (sec) Max (sec) Standard deviation (sec)
Mixture model pr 1.97 E-2 7.93 E-3 .998 9.69 E-2

Optimal Gaussian model pg 1.24 E-2 6.70 E-3 .997 7.23 E-2
Nominal Gaussian model ps 1.38 E-2 6.98 E-3 .998 7.79 E-2

TABLE III
ELAPSED COMPUTATION TIMES (PER ITERATION)

by virtue of (15) and (17). 16000 samples were also drawn
from the complete (internal receiver and multipath) sonar
error simulator, and their sample mean µg = .999 and
variance σ2

g = 3.85 used to construct the optimal Gaussian
approximation pg to the complete sonar ranging error density
via moment-matching. Figure 4 shows the density estimates
obtained for the multipath error (Fig. 4(a)) and the complete
sonar ranging error (Fig. 4(b)) according to this procedure,
together with their histogram density estimates.

The experiment itself consisted of simulating the sensor
observations acquired by the AUV as it made two passes over
the search pattern shown in Fig. 3. Altogether there were
3629 simulated sensor measurements, of which 2153 were
sonar returns from the landmarks and the remaining 1476 were
odometry constraints coming from the AUV’s IMU and DVL
ego-motion estimate. This data set was processed three times,
once using the mixture model pr in (14) in combination with
the method of Section II-C to estimate the sonar ranging error,
again using the optimal Gaussian model pg , and once more

using the nominal Gaussian model ps. In all cases, maximum
likelihood estimation was performed online using RISE2 with
the default settings. Results from this experiment are shown
in Fig. 3 and summarized in Tables I – III.

As can be seen from Tables I and II, the error in the AUV
and landmark positioning estimates when using the mixture
model pr is approximately half of what it is when using the
best possible Gaussian model pg . By explicitly representing
the two cases of line-of-sight and multipath reflection returns,
the mixture model pr is able to correctly exploit the (relatively)
high accuracy of the sonar ranging measurements in the
former case while allowing for high uncertainty in the ranging
measurement in the latter case. This can be seen directly in the
cost functions shown in Fig. 4(c): the cost function obtained
from pr closely tracks that of the nominal model ps near 0
(thus providing strong localization in the case of line-of-sight
returns), but attenuates the cost associated with large ranging
errors to correctly model the high uncertainty associated with
multipath reflection returns. In contrast, the optimal Gaussian



model pg obtained by moment-matching attempts to “split
the difference” between the two sonar ranging modes, and
consequently actually assigns much of its probability mass to
a region of the state space that is in reality highly unlikely
(observe that the mode of pg , as shown in Fig. 4(b), lies
in a region of the state space that the histogram density
approximation assigns very little probability mass).

Furthermore, we observe that while the results obtained
using the maximum entropy model p̂m in (16) are already
sufficient to show significant improvements over the optimal
Gaussian model pg in this toy example, in reality it should be
possible to obtain still better results by better characterizing
the multipath error density pm. As can be seen in Fig.
4(a), the maximum entropy model p̂m turns out not to be
a particularly good representation of pm. This is actually not
terribly surprising: we selected the maximum entropy density
not because we expected it to be a particularly good match,
but because it is the epistemologically correct default model
to use given limited information about the true underlying
distribution [8], [22], a fact which is closely related to its
being the maximally uncertain distribution subject to the given
constraints (in this case, an enforced mean and variance).
The adoption of this model is a very conservative approach
(similar in spirit to the use of minimax estimators), but may
fail to exploit the available data as effectively as would a
model which better characterizes the true underlying multipath
distribution. Thus, we expect that it should be possible to
improve the results given for pr in Tables I and II by better
characterizing pm. In contrast, the model pg already provides
the best possible performance among all Gaussian models.
Thus, the experimental results contained herein are themselves
conservative estimates of how well the method of Section II-C
can perform versus the purely Gaussian assumption.

Finally, we observe that although the mixture model pr
given in (14) is more complicated, and hence more compu-
tationally expensive, than the Gaussian models pg and ps,
this additional computational burden is small compared to the
cost of running the entire RISE2 algorithm (cf. Table III).
The improvement in performance is well worth the additional
expense, as all three of these models are fast enough to run
easily in real-time.

V. RELATED WORK

While the method of Section II-C applies quite generally,
our research is motivated primarily by the SLAM and bundle
adjustment problems; consequently, our discussion will focus
on those fields.

Historically, graph-based approaches to solving the full
SLAM [14], [23], [24] and bundle-adjustment [6], [25] prob-
lems have been formulated under the assumption of mean-zero
additive Gaussian noise. This is computationally expedient, as
it implies that maximum likelihood estimation is equivalent to
minimizing a weighted sum of squared measurement errors;
consequently, essentially all publicly available state-of-the-
art solvers for both graphical SLAM [9], [11], [12], [20]

and bundle adjustment [13] are implemented as sparse least-
squares minimization algorithms.

However, it has long been recognized that estimation via
quadratic cost minimization performs very poorly when the
true sampling distribution may generate gross errors. Several
methods have been proposed for addressing this shortcoming.

A standard approach in bundle adjustment is to replace the
quadratic cost function with a robust cost function designed
to attenuate the ill effects of gross errors (cf. [6, Sec. A6.8]
for a list of commonly-used robust cost functions). While
these methods have proven to be effective in practice, they
often lack a solid theoretical foundation. Many of them are
purely heuristic (i.e. they are engineered by hand to have
certain outlier attenuation properties, rather than derived by
considering the true underlying noise model). These also
generally contain a free parameter b that controls the cutoff
for attenuation, which must be hand-tuned in a more or
less arbitrary fashion, and often at great effort or expense.
Furthermore, even those robust cost functions that do have
solid theoretical underpinnings (e.g. the Huber robust cost
function [7]) still do not make as efficient use of the available
data as would the use of the maximum likelihood estimator
corresponding to the true underlying distribution; they are an
intentionally conservative (hence also wasteful) choice.

More recently, attempts have been made to improve the
robustness of estimation in localization and full SLAM
through the development of models that better capture the
true underlying noise process (for example, the formulation
of the simulation in Section IV-B was partially motivated
by recent work of Prorok et al. [19], who achieved im-
proved performance in ultra-wideband localization by better
characterizing multipath reflection errors). One notable recent
approach that is spiritually similar to our own is due to Olson
and Agarwal [16], who have achieved impressive robustness
results in SLAM applications by explicitly modeling sensor
failure modes such as false loop closures and wheel slippage.
Their work goes beyond the simple Gaussian assumption by
admitting probability densities that are mixtures of Gaussians,
and presents an approximate inference method for performing
computationally efficient online inference over such models
(briefly, at each timestep, each mixture density is approximated
by its constituent component that has the greatest likelihood).
This method can be expected to work well when the true
underlying distribution to be modeled has widely separated
modes, each of which can be well-approximated by a Gaussian
(and in those cases, it serves as a computationally expedient
and easily implemented approximation to the method of Sec-
tion II-C).

However, there are many distributions that one expects to
arise in practical scenarios that do not satisfy these conditions.
For example, consider the exponential distribution (the max-
imum entropy distribution on [0,∞) with a specified mean).
While it is possible to approximate this distribution using a
sum of Gaussians, this approach is computationally expen-
sive (since it requires multiple summands in order to obtain
a reasonably good approximation), and (more perniciously)



introduces false local maxima that can entrap gradient-based
optimizers. Similarly, the analysis of Section IV-A proves that
no summation of Gaussians can accurately model a Cauchy
distribution, even in principle, because such a sum is incapable
of capturing the tail behavior.

In contrast with this prior work, our approach provides a
simple and mathematically principled method for performing
computationally efficient online inference over sparse non-
Gaussian distributions in the general case.

VI. CONCLUSION

In this paper we developed a method for generalizing iSAM
and RISE by removing the assumption of Gaussian factors,
thereby significantly expanding the class of distributions to
which these algorithms can be applied. The generalization is
achieved by means of a simple algebraic reduction that under
relatively mild conditions (boundedness of each of the factors
in the distribution of interest) enables an instance of maximum
likelihood estimation to be reduced to an equivalent instance of
least-squares minimization that can be solved efficiently online
by application of iSAM or RISE. Through this construction we
obtain robust, computationally efficient, and mathematically
correct incremental online maximum likelihood estimators for
non-Gaussian distributions over sparse factor graphs.

It should come as no suprise that the use of the mathemat-
ically correct maximum likelihood estimator can dramatically
improve the quality of the resulting estimate versus what
is achievable under the naı̈ve Gaussian assumption. Indeed,
for most engineering applications, simple direct maximum
likelihood estimation provides a mathematically principled and
provably robust solution to the inference problem, provided
that the correct estimator is used. Our goal in pursuing this
research has been to provide a simple, computationally effi-
cient framework that enables the more widespread application
of these estimators in practice.

Of course, the use of the mathematically correct maximum
likelihood estimator does require some knowledge of what
the true underlying distribution actually is. In some cases
this is known a priori through theoretical means (e.g. models
that come directly from physics, etc.); otherwise we must
attempt to estimate this from data by applying model learning
techniques. Conversely, given a model learned from data, one
cannot assume a priori that this model will be Gaussian;
therefore, the effective practical application of model learn-
ing requires the availability of inference algorithms that are
capable of operating on non-Gaussian distributions. Thus, we
see that model learning techniques and non-Gaussian inference
methods are naturally complementary technologies. Conse-
quently, we intend to explore approaches to model learning
complementary to the generalized iSAM/RISE framework in
subsequent research.
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