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Abstract
Many important geometric estimation problems naturally take the form of synchronization over the special Euclidean
group: estimate the values of a set of unknown group elements x1, . . . , xn ∈ SE( d) given noisy measurements of a sub-
set of their pairwise relative transforms x−1

i xj. Examples of this class include the foundational problems of pose-graph
simultaneous localization and mapping (SLAM) (in robotics), camera motion estimation (in computer vision), and sensor
network localization (in distributed sensing), among others. This inference problem is typically formulated as a non-convex
maximum-likelihood estimation that is computationally hard to solve in general. Nevertheless, in this paper we present an
algorithm that is able to efficiently recover certifiably globally optimal solutions of the special Euclidean synchronization
problem in a non-adversarial noise regime. The crux of our approach is the development of a semidefinite relaxation of
the maximum-likelihood estimation (MLE) whose minimizer provides an exact maximum-likelihood estimate so long as
the magnitude of the noise corrupting the available measurements falls below a certain critical threshold; furthermore,
whenever exactness obtains, it is possible to verify this fact a posteriori, thereby certifying the optimality of the recovered
estimate. We develop a specialized optimization scheme for solving large-scale instances of this semidefinite relaxation by
exploiting its low-rank, geometric, and graph-theoretic structure to reduce it to an equivalent optimization problem defined
on a low-dimensional Riemannian manifold, and then design a Riemannian truncated-Newton trust-region method to solve
this reduction efficiently. Finally, we combine this fast optimization approach with a simple rounding procedure to produce
our algorithm, SE-Sync. Experimental evaluation on a variety of simulated and real-world pose-graph SLAM datasets
shows that SE-Sync is capable of recovering certifiably globally optimal solutions when the available measurements are
corrupted by noise up to an order of magnitude greater than that typically encountered in robotics and computer vision
applications, and does so significantly faster than the Gauss–Newton-based approach that forms the basis of current
state-of-the-art techniques.

1. Introduction

The preceding decades have witnessed remarkable
advances in both the capability and reliability of
autonomous robots. As a result, robotics is now on
the cusp of transitioning from an academic research project
to a ubiquitous technology in industry and in everyday
life, with tremendous potential in applications such as
transportation (Leonard et al., 2008; Thrun et al., 2006;
Urmson et al., 2008), medicine (Burschka et al., 2005;
Taylor, 2006; Taylor et al., 2008), and disaster response
(Fallon et al., 2015; Johnson et al., 2015; Pratt and Manzo,
2013) to increase productivity, alleviate suffering, and
preserve life.

At the same time, however, the very applications for
which robotics is poised to realize the greatest benefit
typically carry a correspondingly high cost of poor per-
formance. For example, in the case of transportation, the
failure of an autonomous vehicle to function correctly may

lead to destruction of property, severe injury, or even loss
of life. This high cost of poor performance presents a seri-
ous barrier to the widespread adoption of robotic technol-
ogy in the high-impact but safety-critical applications that
we would most like to address, absent some guarantee of
“good behavior” on the part of the autonomous agent(s).
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While such guarantees (namely of correctness, optimal-
ity, bounded suboptimality, etc.) have long been a feature
of algorithms for planning (Russel and Norvig, 2010) and
control (Åström and Murray, 2008; Stengel, 1994), to date
it appears that the development of practical algorithms
with clearly delineated performance guarantees for robotic
perception has to a great extent remained an open problem.

This paper presents one such method, SE-Sync, for solv-
ing the fundamental perceptual problem of pose estimation.
Formally, we address the problem of synchronization over
the special Euclidean group: estimate the values of a set of
unknown group elements x1, . . . , xn ∈ SE( d) given noisy
measurements of a subset of their pairwise relative trans-
forms x−1

i xj.1 This estimation problem lies at the core of
many important geometric perception tasks in robotics and
computer vision, including pose-graph simultaneous local-
ization and mapping (SLAM) (Grisetti et al., 2010; Stach-
niss et al., 2016), camera motion and/or orientation estima-
tion (Arrigoni et al., 2016; Hartley et al., 2013; Tron et al.,
2016), and sensor network localization (Peters et al., 2015),
among others.

In the context of robotics, current state-of-the-art algo-
rithms for solving the special Euclidean synchronization
problem as it arises in pose-graph SLAM formulate the
problem as an instance of maximum-likelihood estimation
under an assumed probability distribution for the mea-
surement noise, and then apply general first- or second-
order smooth numerical optimization methods (Nocedal
and Wright, 2006) to estimate a critical point of the objec-
tive function (Grisetti et al., 2010; Stachniss et al., 2016).
While this approach has been crucial in enabling the devel-
opment of fast and scalable SLAM inference methods
(thereby reducing SLAM to a practically solvable prob-
lem), its reliance upon local search techniques leaves the
resulting algorithms vulnerable to convergence to signifi-
cantly suboptimal critical points. Indeed, it is not difficult
to find even fairly simple real-world examples where esti-
mates recovered by local search methods can be so poor as
to be effectively unusable (Figure 1), even for relatively low
levels of measurement noise (Carlone et al., 2015a). Given
the crucial role that the estimates supplied by SLAM sys-
tems play in enabling the basic functions of mobile robots,
this lack of reliability in existing SLAM inference methods
represents a serious barrier to the development of robust
autonomous agents generally.

SE-Sync ameliorates this lack of reliability by enabling
the efficient recovery of provably globally optimal pose-
graph SLAM solutions under realistic operating conditions.
Our algorithm exploits a convex semidefinite relaxation of
the special Euclidean synchronization problem whose min-
imizer provides an exact maximum-likelihood estimate so
long as the magnitude of the noise corrupting the avail-
able measurements falls below a certain critical threshold;
furthermore, whenever exactness obtains, it is possible to
verify this fact a posteriori, thereby certifying the opti-
mality of the recovered estimate. SE-Sync thus belongs to

the class of certifiably correct algorithms (Bandeira, 2016),
meaning that it is capable of efficiently solving a generally
intractable problem within a restricted (but still practically
relevant) operational regime, and of certifying the correct-
ness of the solutions that it recovers. In the case of our algo-
rithm, experimental evaluation on a variety of simulated and
real-world pose-graph SLAM datasets shows that SE-Sync
is capable of recovering certifiably globally optimal pose-
graph SLAM estimates when the available measurements
are corrupted by noise up to an order of magnitude greater
than that typically encountered in robotics and computer
vision applications, and does so significantly faster than
the Gauss–Newton-based approach that forms the basis of
current state-of-the-art (local) search techniques.

The rest of this paper is organized as follows. In the
next section we provide an overview of prior work on the
special Euclidean synchronization problem, with a particu-
lar emphasis on its instantiations in robotics and computer
vision applications. Section 3 introduces the specific for-
mulation of the special Euclidean synchronization problem
that we will address in the remainder of the paper. In Sec-
tion 4, we derive the semidefinite relaxation that will form
the basis of our approach, and prove that its minimizer
provides an exact maximum-likelihood estimate for suf-
ficiently small measurement noise. Section 5 develops a
fast optimization scheme for solving large-scale instances
of the semidefinite relaxation efficiently. Section 6 pro-
vides experimental results demonstrating the advantages
of our algorithm in comparison with the Gauss–Newton-
based approach that forms the basis of current state-of-
the-art pose-graph SLAM methods. Finally, Section 7 con-
cludes with a summary of this paper’s contributions and a
discussion of future research directions.

2. Related work

In this section we provide an overview of prior work on
the special Euclidean synchronization problem (and its rela-
tives), focusing in particular on its instantiations in robotics
and computer vision applications.

The standard formulation of the general group synchro-
nization problem formalizes it as an instance of maximum-
likelihood estimation under an assumed probability dis-
tribution for the measurement noise (Singer, 2011). This
formulation is attractive from a theoretical standpoint,
due to the powerful analytical framework and strong per-
formance guarantees that maximum-likelihood estimation
affords (Ferguson, 1996). However, this formal rigor often
comes at the expense of computational tractability, as it is
frequently the case that the optimization problem underly-
ing an instance of maximum-likelihood estimation is non-
convex, and therefore computationally hard to solve in gen-
eral. Unfortunately, this turns out to be the case for the spe-
cial Euclidean synchronization problem in particular, due to
the non-convexity of SE( d) itself.
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Fig. 1. Examples of suboptimal estimates in pose-graph SLAM. Several estimates are shown for the trajectory of a robot as it enters
and explores a multi-level parking garage, obtained as critical points of the corresponding pose-graph SLAM maximum-likelihood
estimation: (a) globally optimal trajectory estimate, obtained using SE-Sync; (b), (c), and (d) suboptimal critical points of the MLE
obtained using local search.

Given the fundamental computational hardness of non-
convex optimization, prior work on special Euclidean syn-
chronization (and related estimation problems) has predom-
inantly focused on the development of approximate algo-
rithms that can efficiently compute high-quality estimates
in practice. These approximate algorithms can be broadly
categorized into two classes.

The first class consists of algorithms that are based upon
the (heuristic) application of fast local search techniques to
identify promising estimates. This approach has proven par-
ticularly attractive in robotics and computer vision applica-
tions, as the high computational speed of first- and second-
order smooth nonlinear programming methods (Nocedal
and Wright, 2006), together with their ability to exploit
the measurement sparsity that typically occurs in natural-
istic problem instances (Dellaert and Kaess, 2006), enables
these techniques to scale effectively to large problems while
maintaining real-time operation with limited computational
resources. Indeed, there now exist a variety of mature algo-
rithms and software libraries implementing this approach
that are able to process special Euclidean synchronization
problems involving tens to hundreds of thousands of latent
states in real time using only a single thread on a commod-
ity processor (Dellaert et al., 2010; Grisetti et al., 2009;
Kaess et al., 2012; Konolige, 2010; Kümmerle et al., 2011;
Lourakis and Argyros, 2009; Olson et al., 2006; Rosen
et al., 2014). However, the restriction to local search leaves
these methods vulnerable to convergence to significantly
suboptimal critical points, even for relatively low levels of
measurement noise (Carlone et al., 2015a). Some recent
research has attempted to more explicitly tackle the prob-
lem of suboptimal convergence, including the pursuit of

methods with larger basins of attraction to favorable solu-
tions (Grisetti et al., 2009; Olson et al., 2006), advanced
initialization techniques (Carlone et al., 2015b; Martinec
and Pajdla, 2007; Rosen et al., 2015), and the elucidation of
deeper insights into the global structure of the SLAM opti-
mization problem (Huang et al., 2010, 2012; Wang et al.,
2012). Although all of the aforementioned efforts have led
to substantial improvements in the robustness of current
practical SLAM techniques, ultimately they are still unable
to provide any guarantees on the correctness of the solutions
that they recover.

As an alternative to local search, a second class of
algorithms employs convex relaxation: in this approach,
one modifies the original estimation problem so as to
obtain a convex approximation that can be (globally) solved
efficiently. Recent work has proposed a wide variety of
convex relaxations for special Euclidean synchronization
and related estimation problems, including linear (Carlone
et al., 2015b; Martinec and Pajdla, 2007), spectral (Arrigoni
et al., 2016; Bandeira et al., 2013; Cucuringu et al., 2012;
Singer, 2011) and semidefinite (Özyeşil et al., 2015; Rosen
et al., 2015; Wang and Singer, 2013; Singer, 2011) formu-
lations, among others. The advantage of these techniques
is that the convex surrogates they employ generally capture
the global structure of the original problem well enough that
their solutions lie near high-quality regions of the search
space for the original estimation problem. However, as these
surrogates are typically obtained from the original prob-
lem by relaxing constraints, their minimizers are generally
infeasible for the original estimation problem, and there-
fore must be (potentially suboptimally) reprojected onto the
original problem’s feasible set.2
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Although SE-Sync is also (strictly speaking) a fast
approximation technique based upon convex relaxation, it
differs from prior art in that (as we prove in Section 4.2)
it admits a (fairly large) regime of operation in which it is
able to recover the exact optimal solution, together with a
certificate of that solution’s correctness.

3. Problem formulation

3.1. Notation and mathematical preliminaries

3.1.1. Miscellaneous sets. The symbols N and R denote
the non-negative integers and the real numbers, respec-
tively, and we write [n] � {1, . . . , n} for n > 0 as a conve-
nient shorthand notation for sets of indexing integers. Here
|S| denotes the cardinality of a set S.

3.1.2. Differential geometry and Lie groups. We will
encounter several smooth manifolds and Lie groups over
the course of this paper, and will often make use of both the
intrinsic and extrinsic formulations of the same manifold
as convenience dictates; our notation will generally be con-
sistent with that of Warner (1983) in the former case and
(Guillemin and Pollack, 1974) in the latter. When consider-
ing an extrinsic realization M ⊆ R

d of a manifold M as
an embedded submanifold of a Euclidean space and a func-
tion f : R

d → R, it will occasionally be important for us to
distinguish the notions of f considered as a function on R

d

and f considered as a function on the submanifold M; in
these cases, to avoid confusion we will always reserve ∇f
and ∇2f for the gradient and Hessian of f with respect to
the usual metric on R

d , and write grad f and Hess f to refer
to the Riemannian gradient and Hessian of f considered as
a function on M (equipped with the metric inherited from
its embedding) (Boothby, 2003; Kobayashi and Nomizu,
1996).

We let O( d), SO( d), and SE( d) denote the orthogonal,
special orthogonal, and special Euclidean groups in dimen-
sion d, respectively. For computational convenience we will
often identify the (abstract) Lie groups O( d) and SO( d)
with their realizations as the matrix groups:

O( d)∼= {R ∈ R
d×d | RTR = RRT = Id} (1a)

SO( d)∼= {R ∈ R
d×d | RTR = RRT = Id , det( R)= +1}

(1b)
and SE( d) with the semidirect product R

d
� SO( d) with

group operations:

( t1, R1) ·( t2, R2) = ( t1 + R1t2, R1R2) (2a)

( t, R)−1= (−R−1t, R−1) (2b)

The set of orthonormal k-frames in R
n (k ≤ n):

St( k, n) �
{
Y ∈ R

n×k | Y TY = Ik

}
(3)

is also a smooth compact matrix manifold, called the Stiefel
manifold, and we equip St( k, n) with the Riemannian met-
ric induced by its embedding into R

n×k (Absil et al., 2008,
Section 3.3.2).

3.1.3. Linear algebra. In addition to the matrix groups
defined above, we write Sym( d) for the set of real d × d
symmetric matrices; A � 0 and A 	 0 indicate that
A ∈ Sym( d) is positive semidefinite and positive definite,
respectively. For general matrices A and B, A ⊗ B indi-
cates the Kronecker (matrix tensor) product, A† the Moore–
Penrose pseudoinverse, and vec( A) the vectorization opera-
tor that concatenates the columns of A (Horn and Johnson,
1991, Section 4.2). We write ei ∈ R

d and Eij ∈ R
m×n for

the ith unit coordinate vector and ( i, j)th unit coordinate
matrix, respectively, and 1d ∈ R

d for the all-ones vector.
Finally, ‖·‖2, ‖·‖F , and ‖·‖∗ denote the spectral, Frobenius,
and nuclear matrix norms, respectively.

We also frequently consider various ( d × d)-block-
structured matrices, and it will be useful to have specialized
operators for them. To that end, given matrices Ai ∈ R

d×d

for i ∈ [n], we let Diag( A1, . . . , An) denote their matrix
direct sum. Conversely, given a ( d × d)-block-structured
matrix M ∈ R

dn×dn with ij-block Mij ∈ R
d×d , we let

BlockDiagd( M) denote the linear operator that extracts the
( d × d)-block diagonal of M :

BlockDiagd( M) �

⎛
⎜⎝

M11

. . .
Mnn

⎞
⎟⎠ (4)

and SymBlockDiagd its corresponding symmetrized form:

SymBlockDiagd( M) � 1

2
BlockDiagd

(
M +MT) (5)

Finally, we let SBD( d, n) denote the set of symmetric ( d ×
d)-block-diagonal matrices in R

dn×dn:

SBD( d, n) � {Diag( S1, . . . , Sn) | S1, . . . , Sn ∈ Sym( d) }
(6)

3.1.4. Graph theory. An undirected graph is a pair G =
(V , E), where V is a finite set and E is a set of unordered
pairs {i, j} with i, j ∈ V and i = j. Elements of V are called
vertices or nodes, and elements of E are called edges. An
edge e = {i, j} ∈ E is said to be incident to the vertices i
and j; i and j are called the endpoints of e. We write δ( v) for
the set of edges incident to a vertex v.

A directed graph is a pair �G = (V , �E), where V is a finite
set and �E ⊂ V×V is a set of ordered pairs ( i, j) with i = j.3

As before, elements of V are called vertices or nodes, and
elements of �E are called (directed) edges or arcs. Vertices
i and j are called the tail and head of the directed edge
e = ( i, j), respectively; e is said to leave i and enter j (we
also say that e is incident to i and j, and that i and j are the
endpoints of e, as in the case of undirected graphs). We let
t, h : �E → V denote the functions mapping each edge to its
tail and head, respectively, so that t( e)= i and h( e)= j for
all e = ( i, j)∈ �E . Finally, we again let δ( v) denote the set
of directed edges incident to v, and δ−( v) and δ+( v) denote
the sets of edges leaving and entering vertex v, respectively.
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Given an undirected graph G = (V , E), we can construct
a directed graph �G = (V , �E) from it by arbitrarily ordering
the elements of each pair {i, j} ∈ E ; the graph �G so obtained
is called an orientation of G.

A weighted graph is a triplet G = (V , E , w) comprising a
graph (V , E) and a weight function w : E → R defined on
its edges. As E is finite, we can specify the weight function
w by simply listing its values {we}e∈E on each edge. Any
unweighted graph can be interpreted as a weighted graph
equipped with the uniform weight function w ≡ 1.

We can associate to a directed graph �G = (V , �E) with
n = |V| and m = | �E | the incidence matrix A( �G)∈ R

n×m

whose rows and columns are indexed by i ∈ V and e ∈ �E ,
respectively, and whose elements are determined by

A( �G)ie=

⎧⎪⎨
⎪⎩
+1, e ∈ δ+( i)

−1, e ∈ δ−( i)

0, otherwise

(7)

Similarly, we can associate to an undirected graph G an
oriented incidence matrix A( G) obtained as the incidence
matrix of any of its orientations �G. We obtain a reduced
(oriented) incidence matrix A( G) by removing the final row
from the (oriented) incidence matrix A( G).

Finally, we can associate to a weighted undirected graph
G = (V , E , w) with n = |V| the Laplacian matrix L( G)∈
Sym( n) whose rows and columns are indexed by i ∈ V , and
whose elements are determined by

L( G)ij=

⎧⎪⎨
⎪⎩
∑

e∈δ(i) w( e) , i = j

−w( e) , i = j and e = {i, j} ∈ E
0, otherwise

(8)

A straightforward computation shows that the Laplacian of
a weighted graph G and the incidence matrix of one of its
orientations �G are related by

L( G)= A( �G) WA( �G)T (9)

where W � Diag( w( e1) , . . . , w( em) ) is the diagonal
matrix containing the weights of the edges of G.

3.1.5. Probability and statistics. We write N ( μ, �) for
the multivariate Gaussian distribution with mean μ ∈
R

d and covariance matrix 0 � � ∈ Sym( d), and
Langevin( M , κ) for the isotropic Langevin distribution on
SO( d) with mode M ∈ SO( d) and concentration parameter
κ ≥ 0 (cf. Appendix A). With reference to a hidden param-
eter X whose value we wish to infer, we will write X for
its true (latent) value, X̃ to denote a noisy observation of X ,
and X̂ to denote an estimate of X .

3.2. The special Euclidean synchronization
problem

The SE( d) synchronization problem consists of estimat-
ing the values of a set of n unknown group elements

x1, . . . , xn ∈ SE( d) given noisy measurements of m of their
pairwise relative transforms xij � x−1

i xj (i = j). We model
the set of available measurements using an undirected graph
G = (V , E) in which the nodes i ∈ V are in one-to-one
correspondence with the unknown states xi and the edges
{i, j} ∈ E are in one-to-one correspondence with the set
of available measurements, and we assume without loss of
generality that G is connected.4 We let �G =(V , �E) be the
directed graph obtained from G by fixing an orientation,
and assume that a noisy measurement x̃ij of the relative
transform xij is obtained by sampling from the following
probabilistic generative model:

t̃ij = tij + tεij, tεij ∼ N
(

0, τ−1
ij Id

)
R̃ij = RijR

ε
ij, Rε

ij ∼ Langevin
(
Id , κij

) (10)

for all ( i, j)∈ �E , where xij = ( tij, Rij) is the true (latent)

value of xij.5 Finally, we define x̃ji � x̃−1
ij , κji � κij, τji � τij,

and R̃ji � R̃T
ij for all ( i, j)∈ �E .

Given a set of noisy measurements x̃ij sampled from the
generative model (10), applying (2) to express the mea-
surement noise tεij and Rε

ij in terms of xi, xj, and x̃ij and
substituting into the probability density functions for the
Gaussian and Langevin distributions (cf. (52)) appearing
in (10) produces the following likelihood function for the
states xi given the data x̃ij:

p
(
{x̃ij}(i,j)∈ �E | {xi}ni=1

)

=
∏

(i,j)∈ �E

⎧⎪⎪⎨
⎪⎪⎩

( 2π )−
d
2 τ

d
2

ij exp
(
−τij

2

∥∥tj − ti − Rit̃ij
∥∥2

2

)
× 1

cd( κij)
exp

(
κij tr

(
RT

j RiR̃ij

))
⎫⎪⎪⎬
⎪⎪⎭
(11)

Taking negative logarithms of (11) and observing that
tr( RT

j RiR̃ij)= d − 1
2‖R̃ij − RT

i Rj‖2
F (as R̃ij, Ri, Rj ∈ SO( d)),

it follows that a maximum-likelihood estimate x̂MLE ∈
SE( d)n for x1, . . . , xn is obtained as a minimizer of the
following problem:6

Problem 1 (Maximum-likelihood estimation for SE( d)
synchronization).

p∗MLE = min
ti∈Rd

Ri∈SO(d)

∑
(i,j)∈ �E

{
κij‖Rj − RiR̃ij‖2

F

+ τij

∥∥tj − ti − Rit̃ij
∥∥2

2

}
(12)

Unfortunately, Problem 1 is a high-dimensional non-
convex nonlinear program, and is therefore computationally
hard to solve in general. Consequently, in this paper our
strategy will be to replace this problem with a (convex)
semidefinite relaxation (Vandenberghe and Boyd, 1996),
and then exploit this relaxation to search for solutions of
Problem 1.
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4. Forming the semidefinite relaxation

In this section, we develop the semidefinite relaxation that
we will solve in place of the maximum-likelihood estima-
tion Problem 1. Our approach proceeds in two stages. We
begin in Section 4.1 by developing a sequence of simplified
but equivalent reformulations of Problem 1 with the twofold
goal of simplifying its analysis and elucidating some of the
structural correspondences between the optimization (12)
and several simple graph-theoretic objects that can be con-
structed from the set of available measurements x̃ij and the
graphs G and �G. We then exploit the simplified versions of
Problem 1 so obtained to derive the semidefinite relaxation
in Section 4.2.

4.1. Simplifying the maximum-likelihood
estimation

Our first step is to rewrite Problem 1 in a more standard
form for quadratic programs. First, define the translational
and rotational weight graphs W τ �(V , E , {τij}) and Wρ �
(V , E , {κij}) to be the weighted undirected graphs with node
set V , edge set E , and edge weights τij and κij for {i, j} ∈ E ,
respectively. The Laplacians of W τ and Wρ are then:

L( W τ )ij=

⎧⎪⎨
⎪⎩
∑

e∈δ(i) τe, i = j

−τij, {i, j} ∈ E
0, {i, j} /∈ E

(13a)

L( Wρ)ij=

⎧⎪⎨
⎪⎩
∑

e∈δ(i) κe, i = j

−κij, {i, j} ∈ E
0, {i, j} /∈ E

(13b)

Similarly, let L( G̃ρ) denote the connection Laplacian for
the rotational synchronization problem determined by the
measurements R̃ij and measurement weights κij for ( i, j)∈
�E ; this is the symmetric ( d × d)-block-structured matrix
determined by (cf. Singer and Wu, 2012; Wang and Singer,
2013)):

L( G̃ρ) ∈ Sym( dn)

L( G̃ρ)ij �

⎧⎪⎨
⎪⎩

dρ
i Id , i = j

−κijR̃ij, {i, j} ∈ E
0d×d , {i, j} /∈ E

(14a)

dρ
i �

∑
e∈δ(i)

κe (14b)

Finally, let Ṽ ∈ R
n×dn be the ( 1 × d)-block-structured

matrix with ( i, j)-blocks:

Ṽij �

⎧⎪⎨
⎪⎩
∑

e∈δ−(j) τet̃Te , i = j

−τji t̃Tji , ( j, i)∈ �E
01×d , otherwise

(15)

and �̃ the ( d × d)-block-structured block-diagonal matrix
determined by

�̃ � Diag( �̃1, . . . , �̃n)∈ SBD( d, n)

�̃i �
∑

e∈δ−(i)

τet̃et̃Te
(16)

Aggregating the rotational and translational states into the
block matrices:

R �
(
R1 · · · Rn

) ∈ SO( d)n⊂ R
d×dn (17a)

t �

⎛
⎜⎝

t1
...
tn

⎞
⎟⎠ ∈ R

dn (17b)

and exploiting definitions (13a)–(16), Problem 1 can be
rewritten more compactly in the following standard form:

Problem 2 (Maximum-likelihood estimation, QP form).

p∗MLE = min
t∈Rdn

R∈SO(d)n

(
t

vec( R)

)T

( M ⊗ Id)

(
t

vec( R)

)
(18a)

M �
(

L( W τ ) Ṽ
ṼT L( G̃ρ)+�̃

)
(18b)

Problem 2 is obtained from Problem 1 through a straight-
forward (although somewhat tedious) manipulation of the
objective function (Appendix B.1).

Expanding the quadratic form in (18), we obtain

p∗MLE =

min
t∈Rdn

R∈SO(d)n

⎧⎨
⎩

tT (L( W τ )⊗Id) t + 2tT
(
Ṽ ⊗ Id

)
vec( R)

+ vec( R)T
((

L( G̃ρ)+�̃
)
⊗ Id

)
vec( R)

⎫⎬
⎭
(19)

Now observe that for a fixed value of R, Equation (19)
reduces to the unconstrained minimization of a quadratic
form in the translational variable t, for which we can
find a closed-form solution. This enables us to analytically
eliminate t from the optimization problem (19), thereby
obtaining the following:

Problem 3 (Rotation-only maximum-likelihood estima-
tion).

p∗MLE = min
R∈SO(d)n

tr( Q̃RTR) (20a)

Q̃ � L( G̃ρ)+ �̃ − ṼTL( W τ )† Ṽ︸ ︷︷ ︸
Q̃τ

(20b)

Furthermore, given any minimizer R∗ of (20), we can
recover a corresponding optimal value t∗ for t via:

t∗ = − vec
(
R∗ṼTL( W τ )†

)
(21)
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The derivation of (20) and (21) from (19) is given in
Appendix B.2.

Finally, we derive a simplified expression for the transla-
tional data matrix Q̃τ appearing in (20b). Let

	 � Diag( τe1 , . . . , τem )∈ Sym( m) (22)

denote the diagonal matrix whose rows and columns are
indexed by the directed edges e ∈ �E and whose eth diagonal
element gives the precision of the translational observation
corresponding to that edge. Similarly, let T̃ ∈ R

m×dn denote
the ( 1× d)-block-structured matrix with rows and columns
indexed by e ∈ �E and k ∈ V , respectively, and whose
( e, k)-block is given by

T̃ek �
{
−t̃Tkj, e = ( k, j)∈ �E
01×d , otherwise

(23)

Then Problem 3 can be rewritten as:

Problem 4 (Simplified maximum-likelihood estimation).

p∗MLE = min
R∈SO(d)n

tr( Q̃RTR) (24a)

Q̃ = L( G̃ρ)+Q̃τ (24b)

Q̃τ = T̃T	
1
2 
	

1
2 T̃ (24c)

Here 
 ∈ R
m×m is the matrix of the orthogonal pro-

jection operator π : R
m → ker( A( �G) 	

1
2 ) onto the ker-

nel of the weighted incidence matrix A( �G) 	
1
2 of �G. The

derivation of (24c) from (20b) is presented in Appendix B.3.
The advantage of expression (24c) for Q̃τ versus the

original formulation given in (20b) is that the constituent
matrices 
, 	, and T̃ in (24c) each admit particularly sim-
ple interpretations in terms of the underlying directed graph
�G and the translational data ( τij, t̃ij) attached to each edge
( i, j)∈ �E ; our subsequent development will heavily exploit
this structure.

4.2. Relaxing the maximum-likelihood
estimation

In this subsection, we turn our attention to the development
of a convex relaxation that will enable us to recover a global
minimizer of Problem 4 in practice. We begin by relaxing
the condition that R ∈ SO( d)n, obtaining:

Problem 5 (Orthogonal relaxation of the maximum-likeli-
hood estimation).

p∗O = min
R∈O(d)n

tr( Q̃RTR) (25)

We immediately have that p∗O ≤ p∗MLE since SO( d)n⊂
O( d)n. However, we expect that this relaxation will often
be exact in practice: as O( d) is a disjoint union of two com-
ponents separated by a distance of

√
2 under the Frobenius

norm, and the values Ri that we wish to estimate all lie in
SO( d), the elements R∗i of an estimate R∗ obtained as a min-
imizer of (25) will still all lie in the +1 component of O( d)
so long as the elementwise estimation error in R∗ satisfies
‖R∗i − Ri‖F <

√
2 for all i ∈ [n]. This latter condition will

hold so long as the noise perturbing the data matrix Q̃ is not
too large (cf. Appendix C.4).7

Now we derive the Lagrangian dual of Problem 5, using
its extrinsic formulation:

p∗O = min
R∈Rd×dn

tr( Q̃RTR)

s.t. RT
i Ri = Id ∀i = 1, . . . , n

(26)

The Lagrangian corresponding to (26) is

L : R
d×dn × Sym( d)n→ R

L( R, �1, . . . , �n) = tr( Q̃RTR)−
n∑

i=1

tr
(
�i( RT

i Ri − Id)
)

= tr( Q̃RTR)+
n∑

i=1

tr( �i)− tr
(
�iR

T
i Ri

)
(27)

where �i ∈ Sym( d) are symmetric matrices of Lagrange
multipliers for the (symmetric) matrix orthonormality con-
straints in (26). We can simplify (27) by aggregating the
Lagrange multipliers �i into a single direct sum matrix
� � Diag( �1, . . . , �n)∈ SBD( d, n) to yield

L : R
d×dn × SBD( d, n)→ R

L( R, �)= tr
(

( Q̃−�) RTR
)
+ tr( �)

(28)

The Lagrangian dual problem for (26) is thus:

max
�∈SBD(d,n)

{
inf

R∈Rd×dn
tr
(

( Q̃−�) RTR
)
+ tr( �)

}
(29)

with corresponding dual function:

d( �) � inf
R∈Rd×dn

tr
(

( Q̃−�) RTR
)
+ tr( �) (30)

However, we observe that as

tr
(

( Q̃−�) RTR
)
= vec( R)T

(
( Q̃−�)⊗Id

)
vec( R)

(31)
then d( �)= −∞ in (30) unless ( Q̃−�)⊗Id � 0, in which
case the infimum is attained for R = 0. Furthermore, we
have ( Q̃ − �)⊗Id � 0 if and only if Q̃ − � � 0. There-
fore, the dual problem (29) is equivalent to the following
semidefinite program.

Problem 6 (Primal semidefinite relaxation for SE( d) syn-
chronization).

p∗SDP = max
�∈SBD(d,n)

tr( �)

s.t. Q̃−� � 0
(32)
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Finally, a straightforward application of the duality the-
ory for semidefinite programs (see Appendix B.4 for
details) shows that the dual of Problem 6 is:

Problem 7 (Dual semidefinite relaxation for SE( d) syn-
chronization).

p∗SDP = min
Z∈Sym(dn)

tr( Q̃Z)

s.t. Z =

⎛
⎜⎜⎜⎜⎜⎝

Id ∗ ∗ · · · ∗
∗ Id ∗ · · · ∗
∗ ∗ Id ∗
...

...
. . .

...
∗ ∗ ∗ · · · Id

⎞
⎟⎟⎟⎟⎟⎠ � 0

(33)

At this point, it is instructive to compare the dual
semidefinite relaxation (33) with the simplified maximum-
likelihood estimation (24). For any R ∈ SO( d)n, the product
Z = RTR is positive semidefinite and has identity matri-
ces along its ( d × d)-block-diagonal, and so is a feasi-
ble point of (33); in other words, Equation (33) can be
regarded as a relaxation of the maximum-likelihood esti-
mation obtained by expanding the feasible set of (24). Con-
sequently, if it so happens that a minimizer Z∗ of Problem 7
admits a decomposition of the form Z∗ = R∗TR∗ for some
R∗ ∈ SO( d)n, then it is straightforward to verify that this R∗

is also a minimizer of Problem 4. More precisely, we have
the following:

Theorem 1. Let Z∗ be a minimizer of the semidefinite
relaxation Problem 7. If Z∗ factors as

Z∗ = R∗TR∗, R∗ ∈ O( d)n (34)

then R∗ is a minimizer of Problem 5. If, in addition, R∗ ∈
SO( d)n, then R∗ is also a minimizer of Problem 4, and
x∗ = ( t∗, R∗) (with t∗ given by Equation (21)) is an optimal
solution of the maximum-likelihood estimation Problem 1.

Proof. Weak Lagrangian duality implies that the optimal
values of Problems 5 and 6 satisfy p∗SDP ≤ p∗O. But if Z∗

admits the factorization (34), then R∗ is also a feasible point
of (25), and so we must have that p∗O ≤ tr( Q̃R∗TR∗)= p∗SDP.
This shows that p∗O = p∗SDP, and consequently that R∗ is a
minimizer of Problem 5, since it attains the optimal value.

Similarly, we have already established that the optimal
values of Problems 4 and 5 satisfy p∗O ≤ p∗MLE. But if addi-
tionally R∗ ∈ SO( d)n, then R∗ is feasible for Problem 4, and
so by the same logic as before we have that p∗O = p∗MLE and
R∗ is a minimizer of Problem 4. The final claim now fol-
lows from the optimality of R∗ for Problem 4 together with
equation (21).

From a practical standpoint, Theorem 1 serves to identify
a class of solutions of the (convex) semidefinite relaxation
Problem 7 that correspond to global minimizers of the non-
convex maximum-likelihood estimation Problem 1. This
naturally leads us to consider the following two questions:

Under what conditions does Problem 7 admit a solution
belonging to this class? And if such a solution exists, can
we guarantee that we will be able to recover it by solving
Problem 7 using a numerical optimization method?8 These
questions are addressed by the following.

Proposition 2 (Exact recovery via the semidefinite relax-
ation Problem 7). Let Q be the matrix of the form (24b)
constructed using the true (latent) relative transforms xij =
( tij, Rij) in (10). There exists a constant β � β( Q) > 0

(depending upon Q) such that, if ‖Q̃− Q‖2 < β, then:

( i) the dual semidefinite relaxation Problem 7 has a unique
solution Z∗; and

( ii)Z∗ = R∗TR∗, where R∗ ∈ SO( d)n is a minimizer of the
simplified maximum-likelihood estimation Problem 4.

This result is proved in Appendix C, using an approach
adapted from Bandeira et al. (2017).

In short, Proposition 2 guarantees that as long as the
noise corrupting the available measurements x̃ij in (10) is
not too large (as measured by the spectral norm of the
deviation of the data matrix Q̃ from its exact latent value
Q),9 we can recover a global minimizer R∗ of Problem
4 (and, hence, also a global minimizer x∗ = ( t∗, R∗) of
the maximum-likelihood estimation Problem 1 via (21))
by solving Problem 7 using any numerical optimization
method.

5. The SE-Sync algorithm

In light of Proposition 2, our overall strategy in this paper
will be to search for exact solutions of the (hard) maximum-
likelihood estimation Problem 1 by solving the (convex)
semidefinite relaxation Problem 7. To realize this strategy
as a practical algorithm, we therefore require (i) a method
that is able to solve Problem 7 effectively in large-scale real-
world problems, and (ii) a rounding procedure that recovers
an optimal solution of Problem 1 from a solution of Prob-
lem 7 when exactness obtains, and a feasible approximate
solution otherwise. In this section, we develop a pair of
algorithms that fulfill these requirements. Together, these
procedures comprise SE-Sync, our proposed algorithm for
synchronization over the special Euclidean group.

5.1. Solving the semidefinite relaxation

As a semidefinite program, Problem 7 can, in principle,
be solved in polynomial time using interior-point methods
(Todd, 2001; Vandenberghe and Boyd, 1996). In practice,
however, the high computational cost of general-purpose
semidefinite programming algorithms prevents these meth-
ods from scaling effectively to problems in which the
dimension of the decision variable Z is greater than a
few thousand (Todd, 2001). Unfortunately, typical instances
of Problem 7 arising in (for example) robotics and com-
puter vision applications are one to two orders of mag-
nitude larger than this maximum effective problem size,
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and are therefore well beyond the reach of these general-
purpose methods. To overcome this limitation, in this sub-
section we develop a specialized optimization procedure for
solving large-scale instances of Problem 7 efficiently. We
first exploit this problem’s low-rank, geometric, and graph-
theoretic structure to reduce it to an equivalent optimization
problem defined on a low-dimensional Riemannian mani-
fold (Boothby, 2003; Kobayashi and Nomizu, 1996), and
then design a fast Riemannian optimization method to solve
this reduction efficiently.

5.1.1. Simplifying Problem 7.

Exploiting low-rank structure: The dominant computa-
tional cost when applying general-purpose semidefinite
programming methods to solve Problem 7 is the need
to store and manipulate expressions involving the (large,
dense) matrix variable Z. In particular, the O( n3) compu-
tational cost of multiplying and factoring such expressions
quickly becomes intractable as the problem size n increases.
On the other hand, in the case that exactness holds, we know
that the actual solution Z∗ of Problem 7 that we seek has a
very concise description in the factored form Z∗ = R∗TR∗

for R∗ ∈ SO( d)n. More generally, even in those cases where
exactness fails, minimizers Z∗ of Problem 7 typically have a
rank r not much greater than d, and therefore admit a sym-
metric rank decomposition Z∗ = Y ∗TY ∗ for Y ∗ ∈ R

r×dn

with r � dn.
In a pair of papers, Burer and Monteiro (2003, 2005) pro-

posed an elegant general approach to exploit the fact that
large-scale semidefinite programs often admit such low-
rank solutions: simply replace every instance of the decision
variable Z with a rank-r product of the form Y TY to produce
a rank-restricted version of the original problem. This sub-
stitution has the two-fold effect of (i) dramatically reducing
the size of the search space and (ii) rendering the posi-
tive semidefiniteness constraint redundant, since Y TY � 0
for any choice of Y . The resulting rank-restricted form of
the problem is thus a low-dimensional nonlinear program,
rather than a semidefinite program. In the specific case of
Problem 7, this produces:

Problem 8 (Rank-restricted semidefinite relaxation, NLP
form).

p∗SDPLR = min
Y∈Rr×dn

tr( Q̃Y TY )

s.t. BlockDiagd( Y TY )= Diag( Id , . . . , Id) .
(35)

Provided that Problem 7 admits a solution Z∗ with
rank( Z∗)≤ r, we can recover such a solution from an
optimal solution Y ∗ of Problem 8 according to Z∗ = Y ∗TY ∗.

Exploiting geometric structure: In addition to exploiting
Problem 7’s low-rank structure, following Boumal (2015)
we also observe that the specific form of the constraints

appearing in Problems 7 and 8 (i.e. that the d × d block-
diagonals of Z and Y TY must be Id) admits a nice geomet-
ric interpretation that can be exploited to further simplify
Problem 8. Introducing the block decomposition:

Y �
(
Y1 · · · Yn

) ∈ R
r×dn (36)

the block-diagonal constraints appearing in (35) are equiv-
alent to

Y T
i Yi = Id , Yi ∈ R

r×d (37)

i.e. they require that each Yi be an element of the Stiefel
manifold St( d, r) in (3). Consequently, Problem 8 can be
equivalently formulated as an unconstrained Riemannian
optimization problem on a product of on a product of Stiefel
manifolds:

Problem 9 (Rank-restricted semidefinite relaxation, Rie-
mannian optimization form).

p∗SDPLR = min
Y∈St(d,r)n

tr( Q̃Y TY ) (38)

This is the optimization problem that we will actually
solve in practice.

Exploiting graph-theoretic structure: The reduction of
Problem 7 to Problem 9 obviates the need to form or manip-
ulate the large, dense matrix variable Z directly. However,
the data matrix Q̃ that parameterizes each of Problems 4–9
is also dense and of the same order as Z, and so presents
a similar computational difficulty. Accordingly, here we
develop an analogous concise description of Q̃ in terms
of sparse matrices (and their inverses) associated with the
graph �G.

Equations (24b) and (24c) provide a decomposition of
Q̃ in terms of the sparse matrices L( G̃ρ), T̃ , and 	, and
the dense orthogonal projection matrix 
. However, as 
 is
also a matrix derived from a sparse graph, we might suspect
that it too should admit some kind of sparse description.
Indeed, it turns out that 
 admits a sparse decomposition as

A( �G) 	
1
2 = LQ1 (39a)


 = Im −	
1
2 A( �G)T L−TL−1A( �G) 	

1
2 (39b)

where (39a) is a thin LQ decomposition10 of the weighted

reduced incidence matrix A( �G) 	
1
2 of �G. This result is

derived in Appendix B.3. Note that expression (39b) for

 requires only the sparse lower-triangular factor L from
(39a), which can be easily and efficiently obtained (e.g.
by applying successive Givens rotations (Golub and Loan,

1996, Section 5.2.1) directly to A( �G) 	
1
2 itself).

Together, Equations (24b), (24c), and (39b) provide a
concise description of Q̃ in terms of sparse matrices, as
desired. We exploit this decomposition in Section 5.1.3 to
design a fast Riemannian optimization method for solving
Problem 9.
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5.1.2. The Riemannian staircase. At this point, it is again
instructive to compare Problem 9 with the simplified
maximum-likelihood estimation Problem 4 and its relax-
ation Problem 7. As the (special) orthogonal matrices sat-
isfy condition (3) with k = n = d, we have the set of
inclusions

SO( d)⊂ O( d)= St( d, d)⊂ St( d, d + 1)⊂ · · · (40)

and we can therefore view the set of rank-restricted Rieman-
nian optimization problems (38) as comprising a hierarchy
of relaxations of the maximum-likelihood estimation (24)
that are intermediate between Problem 5 and Problem 7
for d < r < dn. However, unlike Problem 7, the vari-
ous instantiations of Problem 9 are non-convex owing to the
(re)introduction of the quadratic orthonormality constraints
(3). It may therefore not be clear whether anything has really
been gained by relaxing Problem 4 to Problem 9, since
it appears that we may have simply replaced one difficult
non-convex optimization problem with another. The follow-
ing remarkable result (Boumal et al., 2016b, Corollary 8)
justifies this approach:

Proposition 3 (A sufficient condition for global optimality
in Problem 9). If Y ∈ St( d, r)n is a (row) rank-deficient
second-order critical point11 of Problem 9, then Y is a
global minimizer of Problem 9 and Z∗ = Y TY is a solution
of the dual semidefinite relaxation Problem 7.

Proposition 3 immediately suggests an algorithm for
recovering solutions Z∗ of Problem 7 from Problem 9: sim-
ply apply a second-order Riemannian optimization method
to search successively higher levels of the hierarchy of
relaxations (38) until a rank-deficient second-order critical
point is obtained.12 This algorithm, the Riemannian stair-
case (Boumal, 2015; Boumal et al., 2016b), is summarized
as Algorithm 1. We emphasize that while Algorithm 1 may
require searching up to O( dn) levels of the hierarchy (38)
in the worst case, in practice this a gross overestimate;
typically, one or two “stairs” suffice.

5.1.3. A Riemannian optimization method for Problem 9.
Proposition 3 and the Riemannian staircase (Algorithm 1)
provide a means of obtaining global minimizers of Prob-
lem 7 by locally searching for second-order critical points
of Problem 9. In this subsection, we design a Riemannian
optimization method that will enable us to rapidly identify
these critical points in practice.

Equations (24b), (24c), and (39b) provide an efficient
means of computing products with Q̃ without the need
to form Q̃ explicitly by performing a sequence of sparse
matrix multiplications and sparse triangular solves. This
operation is sufficient to evaluate the objective appearing
in Problem 9, as well as its gradient and Hessian-vector
products when it is considered as a function on the ambient
Euclidean space R

r×dn:

F( Y ) � tr( Q̃Y TY ) (41a)

Algorithm 1 The Riemannian staircase
Input: An initial point Y ∈ St( d, r0)n, r0 ≥ d + 1.
Output: A minimizer Y ∗ of Problem 9 corresponding to a

solution Z∗ = Y ∗TY ∗ of Problem 7.
1: function RIEMANNIANSTAIRCASE(Y )
2: for r = r0, . . . , dn+ 1 do
3: Starting at Y , apply a Riemannian

optimization method1 to identify a second-
order critical point Y ∗ ∈ St( d, r)n of
Problem 9.

4: if rank( Y ∗) < r then
5: return Y ∗

6: else

7: Set Y ←
(

Y ∗

01×dn

)
.

8: end if
9: end for

10: end function

∇F( Y )= 2YQ̃ (41b)

∇2F( Y ) [Ẏ ] = 2Ẏ Q̃ (41c)

Furthermore, there are simple relations between the ambi-
ent Euclidean gradient and Hessian-vector products in
(41b) and (41c) and their corresponding Riemannian coun-
terparts when F( ·) is viewed as a function restricted to the
embedded submanifold St( d, r)n⊂ R

r×dn. With reference
to the orthogonal projection operator onto the tangent space
of St( d, r)n at Y (Edelman et al., 1998, equation (2.3)):

ProjY : TY

(
R

r×dn
)→ TY (St( d, r)n )

ProjY ( X ) = X − Y SymBlockDiagd( Y TX )
(42)

the Riemannian gradient grad F( Y ) is simply the orthog-
onal projection of the ambient Euclidean gradient ∇F( Y )
(cf. Absil et al., 2008, equation (3.37)):

grad F( Y )= ProjY ∇F( Y ) (43)

Similarly, the Riemannian Hessian-vector product
Hess F( Y ) [Ẏ ] can be obtained as the orthogonal pro-
jection of the ambient directional derivative of the gradient
vector field grad F( Y ) in the direction of Ẏ (cf. Absil et al.,
2008, equation (5.15)). A straightforward computation
shows that this is given by13

Hess F( Y ) [Ẏ ] = ProjY
(
D [grad F( Y ) ] [Ẏ ]

)
= ProjY

(
∇2F( Y ) [Ẏ ]

− Ẏ SymBlockDiagd

(
Y T∇F( Y )

)
)

(44)

Equations (24b), (24c), and (39)–(44) provide an efficient
means of computing F( Y ), grad F( Y ), and Hess F( Y ) [Ẏ ].
Consequently, we propose to employ a truncated-Newton
trust-region optimization method (Dembo and Steihaug,

1. For example, the second-order Riemannian trust-region method
(Boumal et al., 2016a, Algorithm 3).
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1983; Nash, 2000; Steihaug, 1983) to solve Problem 9;
this approach will enable us to exploit the availability of
an efficient routine for computing Hessian-vector prod-
ucts Hess F( Y ) [Ẏ ] to implement a second-order optimiza-
tion method without the need to explicitly form or factor
the dense matrix Hess F( Y ). Moreover, truncated-Newton
methods comprise the current state of the art for super-
linear large-scale unconstrained nonlinear programming
(Nocedal and Wright, 2006, Section 7.1), and are there-
fore ideally suited for solving large-scale instances of (38).
Accordingly, we will apply the truncated-Newton Rieman-
nian trust-region (RTR) method (Absil et al., 2007; Boumal
et al., 2016a) to efficiently compute high-precision14 esti-
mates of second-order critical points of Problem 9.

Algorithm 2 Rounding procedure for solutions of Problem
9
Input: A minimizer Y ∗ ∈ St( d, r)n of Problem 9.
Output: A feasible point R̂ ∈ SO( d)n.

1: function ROUNDSOLUTION(Y ∗)
2: Compute a rank-d truncated singular value

[1] decomposition UdΞdVT
d for Y ∗ and assign

[1] R̂ ← ΞdVT
d .

3: Set N+ ← |{R̂i | det( R̂i) > 0}|.
4: if N+ < � n

2� then

5: R̂ ← Diag( 1, . . . , 1,−1) R̂.
6: end if
7: for i = 1, . . . , n do
8: Set R̂i ← NEARESTROTATION(R̂i).
9: end for

10: return R̂
11: end function

5.2. Rounding the solution

In the previous subsection, we described an efficient algo-
rithmic approach for computing minimizers Y ∗ ∈ St( d, r)n

of Problem 9 that correspond to solutions Z∗ = Y ∗TY ∗

of Problem 7. However, our ultimate goal is to extract an
optimal solution R∗ ∈ SO( d)n of Problem 4 from Z∗ when-
ever exactness holds, and a feasible approximate solution
R̂ ∈ SO( d)n otherwise. In this subsection, we develop a
rounding procedure satisfying these criteria. To begin, let
us consider the case in which exactness obtains; here

Y ∗TY ∗ = Z∗ = R∗TR∗ (45)

for some optimal solution R∗ ∈ SO( d)n of Problem 4.
As rank( R∗)= d, this implies that rank( Y ∗)= d as well.
Consequently, letting

Y ∗ = UdΞdVT
d (46)

denote a (rank-d) thin singular value decomposition (Golub
and Loan, 1996, Section 2.5.3) of Y ∗, and defining

Ȳ � ΞdVT
d ∈ R

d×dn (47)

it follows from substituting (46) into (45) that

Ȳ TȲ = Z∗ = R∗TR∗ (48)

Equation (48) implies that the d× d block-diagonal of Ȳ TȲ
satisfies Ȳ T

i Ȳi = Id for all i ∈ [n], i.e. Ȳ ∈ O( d)n. Similarly,
comparing the elements of the first block rows of Ȳ TȲ and
R∗TR∗ in (48) shows that Ȳ T

1 Ȳj = R∗1R∗j for all j ∈ [n]. Left-

multiplying this set of equalities by Ȳ1 and letting A = Ȳ1R∗1
then gives

Ȳ = AR∗, A ∈ O( d) (49)

As any product of the form AR∗ with A ∈ SO( d) is also
an optimal solution of Problem 4 (by gauge symmetry),
Equation (49) shows that Ȳ as defined in (47) is optimal
provided that Ȳ ∈ SO( d)n specifically. Furthermore, if this
is not the case, we can always make it so by left-multiplying
Ȳ by any orientation-reversing element of O( d), for exam-
ple Diag( 1, . . . , 1,−1). Thus, Equations (46)–(49) give a
straightforward means of recovering an optimal solution of
Problem 4 from Y ∗ whenever exactness holds.

Moreover, this procedure can be straightforwardly gen-
eralized to the case that exactness fails, thereby producing
a convenient rounding scheme. Specifically, we can con-
sider the right-hand side of (47) as taken from a rank-d
truncated singular value decomposition of Y ∗ (so that Ȳ is
an orthogonal transform of the best rank-d approximation
of Y ∗), multiply Ȳ by an orientation-reversing element of
O( d) according to whether a majority of its block elements
have positive or negative determinant, and then project each
of the blocks of Ȳ to the nearest rotation matrix.15 This
generalized rounding scheme is formalized as Algorithm 2.

5.3. The complete algorithm

Combining the efficient optimization approach of Sec-
tion 5.1 with the rounding procedure of Section 5.2 pro-
duces SE-Sync (Algorithm 3), our proposed algorithm for
synchronization over the special Euclidean group.

Algorithm 3 The SE-Sync algorithm
Input: An initial point Y ∈ St( d, r0)n, r0 ≥ d + 1.
Output: A feasible estimate x̂ ∈ SE( d)n for the maximum-

likelihood estimation Problem 1 and the lower bound
p∗SDP for the optimal value of Problem 1.

1: function SE-SYNC(Y )
2: Set Y ∗ ← RIEMANNIANSTAIRCASE( Y ).
3: Set p∗SDP ← F( Q̃Y ∗TY ∗).
4: Set R̂ ← ROUNDSOLUTION( Y ∗).
5: Recover the optimal translational estimates t̂

[1] corresponding to R̂ via (21).
6: Set x̂ ←( t̂, R̂).
7: return

{
x̂, p∗SDP

}
8: end function

When applied to an instance of SE( d) synchronization,
SE-Sync returns a feasible point x̂ ∈ SE( d)n for the
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maximum-likelihood estimation Problem 1 and the lower
bound p∗SDP ≤ p∗MLE for the optimal value of Problem 1.
This lower bound provides an upper bound on the sub-
optimality of any feasible point x = ( t, R)∈ SE( d)n as a
solution of Problem 1 according to

F( Q̃RTR)−p∗SDP ≥ F( Q̃RTR)−p∗MLE (50)

Furthermore, in the case that Problem 7 is exact, the esti-
mate x̂ = ( t̂, R̂)∈ SE( d)n returned by Algorithm 3 attains
this lower bound:

F( Q̃R̂TR̂)= p∗SDP (51)

Consequently, verifying a posteriori that (51) holds pro-
vides a computational certificate of x̂’s correctness as a
solution of the maximum-likelihood estimation Problem 1.
SE-Sync is thus a certifiably correct algorithm for SE( d)
synchronization, as claimed.

6. Experimental results

In this section, we evaluate the performance of SE-Sync
on a variety of special Euclidean synchronization prob-
lems drawn from the motivating application of pose-graph
SLAM. As a basis for comparison, we also evaluate the
performance of the Powell’s Dog-Leg optimization method
(Powell, 1970) using the Gauss–Newton local quadratic
model (PDL-GN), a state-of-the-art approach for solving
large-scale instances of the special Euclidean synchroniza-
tion problem in robotics and computer vision applications
(Rosen et al., 2014).

All of the following experiments are performed on a
Dell Precision 5510 laptop with an Intel Xeon E3-1505M
2.80 GHz processor and 16 GB of RAM running Ubuntu
16.04. Our experimental implementation of SE-Sync 16 is
written in C++ (Rosen and Carlone, 2017), and we com-
pare it against the Powell’s Dog-Leg implementation sup-
plied by GTSAM,17 a highly optimized, state-of-the-art
software library specifically designed for large-scale SLAM
and bundle adjustment applications (Dellaert, 2012). Each
optimization algorithm is limited to a maximum of 1,000
(outer) iterations, and each outer iteration of the RTR
algorithm employed in SE-Sync is limited to a maxi-
mum of 10,000 Hessian-vector product operations; conver-
gence is declared whenever the relative decrease in function
value between two subsequent (accepted) iterations is less
than 10−6.18 The Powell’s Dog-Leg method is initialized
using the chordal initialization, a state-of-the-art method
for bootstrapping an initial solution in SLAM and bundle
adjustment problems (Carlone et al., 2015b; Martinec and
Pajdla, 2007), and we set r0 = 5 in the Riemannian stair-
case (Algorithm 1). Finally, as SE-Sync is based upon solv-
ing the (convex) semidefinite relaxation Problem 7, it does
not require a high-quality initialization to reach a globally
optimal solution; nevertheless, it can still benefit (in terms
of reduced computation time) from being supplied with

Fig. 2. The ground-truth configuration of an instance of the cube
dataset with s = 10 and pLC = 0.1. The robot’s trajectory (with
associated odometric measurements) is drawn in blue, and loop
closure observations in red.

one. Consequently, in the following experiments we employ
two initialization procedures in conjunction with SE-Sync:
the first (random) simply samples a point uniformly ran-
domly from St( d, r0)n, while the second (chordal) sup-
plies the same chordal initialization that the Powell’s Dog-
Leg method receives, to enable a fair comparison of the
algorithms’ computational speeds.

6.1. Cube experiments

In this first set of experiments, we are interested in investi-
gating how the performance of SE-Sync is affected by fac-
tors such as measurement noise, measurement density, and
problem size. To that end, we conduct a set of simulation
studies that enable us to interrogate each of these factors
individually. Concretely, we revisit the cube experiments
considered in our previous work (Carlone et al., 2015a); this
scenario simulates a robot traveling along a rectilinear path
through a regular cubical lattice with a side length of s poses
(Figure 2). An odometric measurement is available between
each pair of sequential poses, and measurements between
nearby non-sequential poses are available with probability
pLC; the measurement values x̃ij = ( t̃ij, R̃ij) themselves are
sampled according to (10). We fix default values for these
parameters at κ = 16.67 (corresponding to an expected
angular root-mean-squared (RMS) error of 10◦ for the rota-
tional measurements R̃ij, cf. (63) in Appendix A), τ = 75
(corresponding to an expected RMS error of 0.20 m for the
translational measurements t̃ij), pLC = 0.1, and s = 10 (cor-
responding to a default problem size of 1,000 poses), and
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consider the effect of varying each of them individually;
our complete dataset consists of 50 realizations of the cube
sampled from the generative model just described for each
joint setting of the parameters κ , τ , pLC , and s. Results for
these experiments are shown in Figure 3.

Consistent with our previous findings (Carlone et al.,
2015a), these results suggest that the exactness of the
semidefinite relaxation (33) depends primarily upon the
level of noise corrupting the rotational observations R̃ij in
(10). Furthermore, we see from Figure 3(a) that in these
experiments, exactness obtains for rotational noise with an
RMS angular error up to about 20◦; this is roughly an
order of magnitude greater than the level of noise affect-
ing sensors typically deployed in robotics and computer
vision applications, which provides strong empirical evi-
dence that SE-Sync is capable of recovering certifiably
globally optimal solutions of pose-graph SLAM problems
under “reasonable” operating conditions.

In addition to its ability to recover certifiably optimal
solutions, examining the center column of Figure 3 reveals
that SE-Sync is also significantly faster than the Gauss–
Newton-based approach that underpins current state-of-the-
art pose-graph SLAM algorithms (Grisetti et al., 2010;
Kaess et al., 2012; Kümmerle et al., 2011; Rosen et al.,
2014). Given that SE-Sync performs direct global optimiza-
tion, whereas these latter methods are purely local search
techniques, this observation may at first seem somewhat
counterintuitive. However, we can attribute SE-Sync’s good
computational performance to two key design decisions that
distinguish SE-Sync from more traditional Gauss–Newton-
based techniques. First, SE-Sync makes use of the exact
Hessian (cf. Section 5.1.3), whereas the Gauss–Newton
model, by construction, uses an approximation whose qual-
ity degrades in the presence of either large measurement
residuals or strong nonlinearities in the underlying objec-
tive function (cf. e.g. Rosen et al., 2014, Section III-B),
both of which are typical features of SLAM problems. This
implies that the quadratic model function (cf. e.g. (Nocedal
and Wright, 2006, Chp. 2)) that SE-Sync employs better
captures the shape of the underlying objective than the one
used by Gauss–Newton, so that the former is capable of
computing higher-quality update steps. Second, and more
significantly, SE-Sync makes use of a truncated-Newton
method (RTR), which avoids the need to explicitly form
or factor the (Riemannian) Hessian Hess F( Y ); instead, at
each iteration this approach approximately solves the New-
ton equations using a truncated conjugate gradient algo-
rithm (Golub and Loan, 1996, Chapter 10),19 and only com-
putes this approximate solution as accurately as is necessary
to ensure adequate progress towards a critical point with
each applied update. The result is that RTR requires only
a few sparse matrix–vector multiplications to obtain each
update step; moreover, Equations (24b), (24c), (39), and
(41)–(44) show that the constituent matrices involved in the
computation of these products are constant, and can there-
fore be precomputed and cached at the beginning of the

SE-Sync algorithm. In contrast, standard Gauss–Newton-
based methods must recompute and refactor the Jacobian at
each iteration. As the linearization of the objective function
typically comprises the majority of the computational effort
required in each iteration of a nonlinear optimizer, SE-
Sync’s exploitation of the particular geometry of the special
Euclidean synchronization problem to avoid this expensive
step enables it to realize substantial computational savings
versus a standard Gauss–Newton-based approach.

6.2. SLAM benchmark datasets

The experiments in the previous section made extensive use
of simulated cube datasets to investigate the effects of mea-
surement noise, measurement density, and problem size on
SE-Sync’s performance. In this next set of experiments, we
evaluate SE-Sync on a suite of larger and more heteroge-
neous 2D and 3D pose-graph SLAM benchmarks that better
represent the distribution of problems encountered in real-
world SLAM applications. Five of these (the manhattan,
city, sphere, torus, and grid datasets) are also synthetic
(although generated using an observation model different
from (10)), while the remainder (the csail, intel, ais2klinik,
garage, cubicle , and rim datasets) are real-world exam-
ples (Figures 4 and 5). For the purpose of these experi-
ments, we restrict attention to the case in which SE-Sync
is supplied with the chordal initialization, and once again
compare it with the Powell’s Dog-Leg method. Results for
these experiments are listed in Tables 1 and 2.

On each of these examples, both SE-Sync and Powell’s
Dog-Leg converged to the same (globally optimal) solu-
tion. However, consistent with our findings in Section 6.1,
SE-Sync did so considerably faster, outperforming Powell’s
Dog-Leg on all but one of these examples (the garage
dataset), by a factor of 3.05 on average (excluding the
extreme case of the grid dataset, where SE-Sync outper-
formed Powell’s Dog-Leg by an impressive factor of 27).
These results further support our claim that SE-Sync pro-
vides an effective means of recovering certifiably glob-
ally optimal pose-graph SLAM solutions under real-world
operating conditions, and does so significantly faster than
current state-of-the-art Gauss–Newton-based alternatives.

7. Conclusion

In this paper, we presented SE-Sync, a certifiably correct
algorithm for synchronization over the special Euclidean
group. Our algorithm is based upon the development of a
novel semidefinite relaxation of the special Euclidean syn-
chronization problem whose minimizer provides an exact,
globally optimal solution so long as the magnitude of the
noise corrupting the available measurements falls below
a certain critical threshold, and employs a specialized,
structure-exploiting Riemannian optimization method to
solve large-scale instances of this semidefinite relaxation
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Fig. 3. Results for the cube experiments. These figures plot the median of the objective values (left column) and elapsed computation
times (center column) attained by the Powell’s Dog-Leg and SE-Sync algorithms, as well as the upper bound ( F( Q̃R̂TR̂)−p∗SDP) /p∗SDP
for the relative suboptimality of the solution recovered by SE-Sync (right column), for 50 realizations of the cube dataset as functions
of the measurement precisions κ (first row) and τ (second row), the loop closure probability pLC (third row), and the problem size
(fourth row).
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(a) manhattan (b) city

(c) csail (d) intel (e) ais2klinik

Fig. 4. Globally optimal solutions for the 2D SLAM benchmark datasets listed in Table 1.

(a) sphere (b) torus (c) grid

(d) garage (e) cubicle (f) rim

Fig. 5. Globally optimal solutions for the 3D SLAM benchmark datasets listed in Table 2.

efficiently. Experimental evaluation on a variety of simu-
lated and real-world pose-graph SLAM datasets shows that
SE-Sync is capable of recovering globally optimal solutions
when the available measurements are corrupted by noise up
to an order of magnitude greater than that typically encoun-
tered in robotics and computer vision applications, and
does so significantly faster than the Gauss–Newton-based
approach that forms the basis of current state-of-the-art
techniques.

In addition to enabling the computation of certifiably
correct solutions under nominal operating conditions, we
believe that SE-Sync may also be extended to support prov-
ably robust and statistically efficient estimation in the case
that some fraction of the available measurements x̃ij in (10)
are contaminated by outliers. Our basis for this belief is the
observation that Proposition 2 together with the experimen-
tal results of Section 6 imply that, under typical operating
conditions, the maximum-likelihood estimation Problem 1
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Table 1. Results for the 2D SLAM benchmark datasets.

# Poses # Measurements PDL-GN SE-Sync
Objective value Time (s) Objective value Time (s) Rel. suboptimality

manhattan 3,500 5,453 6.432× 103 0.268 6.432× 103 0.080 3.677× 10−15

city 10,000 20,687 6.386× 102 1.670 6.386× 102 1.576 1.015× 10−14

csail 1,045 1,172 3.170× 101 0.029 3.170× 101 0.010 7.844× 10−16

intel 1,728 2,512 5.235× 101 0.120 5.235× 101 0.071 1.357× 10−16

ais2klinik 15,115 16,727 1.885× 102 12.472 1.885× 102 1.981 2.412× 10−15

Table 2. Results for the 3D SLAM benchmark datasets.

# Poses # Measurements PDL-GN SE-Sync
Objective value Time (s) Objective value Time (s) Rel. suboptimality

sphere 2,500 4,949 1.687× 103 0.704 1.687× 103 0.580 1.890× 10−15

torus 5,000 9,048 2.423× 104 1.963 2.423× 104 0.284 5.256× 10−15

grid 8,000 22,236 8.432× 104 46.343 8.432× 104 1.717 2.934× 10−15

garage 1,661 6,275 1.263× 100 0.415 1.263× 100 0.468 1.618× 10−14

cubicle 5,750 16,869 7.171× 102 2.456 7.171× 102 0.754 2.061× 10−15

rim 10,195 29,743 5.461× 103 6.803 5.461× 103 2.256 5.663× 10−15

is equivalent to a low-rank convex program with a linear
observation model and a compact feasible set (Problem
7); in contrast to general nonlinear estimation, this class
of problems enjoys a beautiful geometric structure (Chan-
drasekaran et al., 2012) that has already been shown to
enable remarkably robust recovery, even in the presence
of gross contamination (Candès et al., 2011; Zhou et al.,
2010). We intend to investigate this possibility in future
research.

Finally, although the specific relaxation (33) under-
pinning SE-Sync was obtained by exploiting the well-
known Lagrangian duality between quadratically con-
strained quadratic programs and semidefinite programs
(Luo et al., 2010), recent work in real algebraic geome-
try has revealed the remarkable fact that the much broader
class of (rational) polynomial optimization problems20 also
admits a hierarchy of semidefinite relaxations that is like-
wise frequently exact (or can be made arbitrarily sharp)
when applied to real-world problem instances (Bugarin
et al., 2016; Lasserre, 2001, 2006; Laurent, 2009; Nie
and Demmel, 2008; Nie et al., 2006; Parrilo, 2003; Waki
et al., 2006). Given the broad generality of this latter class
of models, SE-Sync’s demonstration that it is indeed pos-
sible to solve surprisingly large (but suitably structured)
semidefinite programs with the temporal and computa-
tional resources typically available on mobile autonomous
platforms suggests the further possibility of designing a
broad class of practically-effective certifiably correct algo-
rithms for robust machine perception based upon struc-
tured semidefinite programming relaxations. It is our hope
that this report will encourage further investigation of this
exciting possibility for machine perception.21
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Notes

1. The “synchronization” nomenclature originates with the pro-
totypical example of this class of problems: synchronization
of clocks over a communications network (Karp et al., 2003;
Giridhar and Kumar, 2006) (corresponding to synchronization
over the additive group R).

2. This reprojection operation is often referred to as rounding.
3. Note that our definitions of directed and undirected graphs

exclude loops and parallel edges. Although all of our results
can be straightforwardly generalized to admit parallel edges
(and indeed our experimental implementation of SE-Sync
supports them), we have adopted this restriction to simplify
the following presentation.

4. If G is not connected, then the problem of estimating the
unknown states x1, . . . , xn decomposes into a set of inde-
pendent estimation problems that are in one-to-one corre-
spondence with the connected components of G; thus, the
general case is always reducible to the case of connected
graphs.

5. We use a directed graph to model the measurements x̃ij sam-
pled from (10) because the distribution of the noise corrupting
the latent values xij is not invariant under the group inverse
operation of SE( d), as can be seen by composing (10) with
(2b). Consequently, we must keep track of which state xi was
the “base frame” for each measurement.
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6. Note that a minimizer of Problem 1 is a maximum-likelihood
estimate (rather than the maximum-likelihood estimate)
because Problem 1 always has multiple (in fact, infinitely
many) solutions: as the objective function in (12) is con-
structed from relative measurements of the form x−1

i xj, if

x∗ = ( x∗1, . . . , x∗n)∈ SE( d)n minimizes (12), then g • x∗ �
( g ·x∗1, . . . , g ·x∗n) also minimizes (12) for all g ∈ SE( d). Con-
sequently, the solution set of Problem 1 is organized into orbits
of the diagonal action • of SE( d) on SE( d)n. This gauge
symmetry simply corresponds to the fact that relative mea-
surements x−1

i xj provide no information about the absolute
values of the states xi.

7. There is also some empirical evidence that the relaxation
from SO( d) to O( d) is not the limiting factor in the exact-
ness of our approach. In our prior work (Tron et al., 2015),
we observed that in the specific case d = 3 it is possible
to replace the (cubic) determinantal constraint in (1b) with
an equivalent quadratic constraint by using the cross-product
operation on the columns of each Ri to enforce the correct
orientation; this leads to an equivalent formulation of Prob-
lem 1 as a quadratically constrained quadratic program that
can be relaxed directly to a semidefinite program (Luo et al.,
2010) without the intermediate relaxation through O( d). We
found no significant difference between the sharpness of the
relaxation incorporating the determinantal constraint and the
relaxation without (Problem 7).

8. Note that Problem 7 could conceivably have multiple solu-
tions, only some of which belong to the class specified in
Theorem 1; in that case, it is possible that a numerical opti-
mization method might converge to a minimizer of Problem 7
that does not correspond to a solution of Problem 1.

9. Ideally, one would like to have both (i) an explicit (i.e. closed-
form) expression that lower-bounds the magnitude β of the
admissible deviation of the data matrix Q̃ from its exact value
Q (as measured in some suitable norm) and (ii) a concentra-
tion inequality (Tropp, 2015) (or several) that upper-bounds
the probability p( ‖Q̃− Q‖ > δ) of large deviations; together,
these would enable the derivation of a lower bound on the
probability that a given realization of Problem 4 sampled
from the generative model (10) admits an exact semidefi-
nite relaxation (33). Although it is possible (with a bit more
effort) to derive such lower bounds on β using straightforward
(although somewhat tedious) quantitative refinements of the
continuity argument given in Appendix C, to date the sharpest
concentration inequalities that we have been able to derive
appear to be significantly suboptimal, and therefore lead to
estimates for the probability of exactness that are grossly con-
servative versus what we observe empirically (cf. also the
discussion in Remark 4.6 and Section 5 of (Bandeira et al.,
2017)). Consequently, we have chosen to state Proposition 2
as a simple existence result for β to simplify its presentation
and proof, while still providing some rigorous justification for
our convex relaxation approach. We remark that as a practical
matter, we have already shown in our previous work (Car-
lone et al., 2015a) (and do so again here in Section 6) that
Problem 7 in fact remains exact with high probability when
the measurements x̃ij in (10) are corrupted with noise up to an
order of magnitude greater than what is encountered in typi-
cal robotics and computer vision applications; consequently,
we leave the derivation of sharper concentration inequalities
and explicit lower bounds on the probability of exactness to
future research.

10. This is the transpose of a QR decomposition (Golub and Loan,
1996, Section 5.2).

11. That is, a point satisfying grad F( Y )= 0 and Hess F( Y )� 0
(cf. (41)–(44)).

12. Note that because every Y ∈ St( d, r)n is row rank-deficient
for r > dn, this procedure is guaranteed to recover an optimal
solution after searching at most dn+ 1 levels of the hierarchy
(38).

13. We point out that Equations (42), (43), and (44) correspond
to equations (7), (8), and (9) in Boumal (2015), with the
caveat that Boumal’s definition of Y is the transpose of ours.
Our notation follows the more common convention (cf. e.g.
Edelman et al., 1998) that elements of a Stiefel manifold are
matrices with orthonormal columns, rather than rows.

14. The requirement of high precision here is not superfluous:
because Proposition 3 requires the identification of rank-
deficient second-order critical points, whatever local search
technique we apply to Problem 9 must be capable of numer-
ically approximating a critical point precisely enough that its
rank can be correctly determined.

15. This is the special orthogonal Procrustes problem, which
admits a simple closed-form solution based upon the singular
value decomposition (Hanson and Norris, 1981; Umeyama,
1991).

16. Available at https://github.com/david-m-rosen/SE-Sync.
17. Version 4.0, available at https://bitbucket.org/gtborg/gtsam.
18. Ordinarily, SE-Sync employs (preconditioned) gradient-based

stopping criteria to directly control the precision of the
estimate obtained for a first-order critical point. However,
GTSAM does not implement a gradient-based stopping con-
dition, so for the purpose of these experiments, we have dis-
abled SE-Sync’s gradient-based stopping criteria, and used
a relative-decrease-based stopping condition for both algo-
rithms (with a sufficiently tight tolerance to ensure that each
obtains a high-precision solution) to enable a fair comparison
of their computational speeds.

19. Hence the nomenclature.
20. These are nonlinear programs in which the feasible set is a

semialgebraic set (the set of real solutions of a system of
polynomial (in)equalities) and the objective is a (rational)
polynomial function.

21. This report is an extended version of a paper originally pre-
sented at the 12th International Workshop on the Algorithmic
Foundations of Robotics (Rosen et al., 2016). An earlier draft
appeared as a technical report issued by the Computer Science
and Artificial Intelligence Laboratory of the Massachusetts
Institute of Technology (Rosen et al., 2017).
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Appendix A. The isotropic Langevin
distribution

In this appendix, we provide a brief overview of the
isotropic Langevin distribution on SO( d), with a particular
emphasis on the important special cases d = 2, 3.

The isotropic Langevin distribution on SO( d) with mode
M ∈ SO( d) and concentration parameter κ ≥ 0, denoted
Langevin( M , κ), is the distribution determined by the fol-
lowing probability density function (with respect to the
Haar measure on SO( d) (Warner, 1983)):

p( X ; M , κ)= 1

cd( κ)
exp

(
κ tr( MTX )

)
(52)

where cd( κ) is a normalization constant (Boumal et al.,
2014; Chiuso et al., 2008). Note that the product MTX =

M−1X ∈ SO( d) appearing in (52) is the relative rotation
sending M to X .

In general, given any Z ∈ SO( d), there exists some U ∈
O( d) such that

UTZU =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎝

R( θ1)
. . .

R( θk)

⎞
⎟⎟⎠ , d mod 2 = 0

⎛
⎜⎜⎜⎜⎝

R( θ1)
. . .

R( θk)

1

⎞
⎟⎟⎟⎟⎠ , d mod 2 = 1

(53)
where k � �d/2�, θi ∈ [−π , π ) for all i ∈ [k], and

R( θ ) �
(

cos( θ ) sin( θ )
− sin( θ ) cos( θ )

)
∈ SO( 2) (54)

This canonical decomposition corresponds to the fact that
every rotation Z ∈ SO( d) acts on R

d as a set of elemen-
tary rotations (54) of mutually orthogonal 2D subspaces.
As tr( ·) is a class function, it follows from (53) and (54)
that the trace appearing in the isotropic Langevin density
(52) can be equivalently expressed as

tr( MTX )= d mod 2+ 2
k∑

i=1

cos( θi) (55)

where θi are the rotation angles for each of the elementary
rotations of MTX . Note, however, that although the right-
hand side of (55) depends upon the magnitudes of these
elementary rotations, it does not depend upon the orienta-
tion of their corresponding subspaces; this is the sense in
which the Langevin density (52) is “isotropic.”

For the special cases d = 2, 3, the normalization constant
cd( κ) appearing in (52) admits the following simple closed
forms (cf. Boumal et al., 2014, equations (4.6) and (4.7)):

c2( κ) = I0( 2κ) (56a)

c3( κ) = exp( κ) (I0( 2κ)−I1( 2κ) ) (56b)

where In( z) denotes the modified Bessel function of the first
kind (Olver et al., 2016, equation (10.32.3)):

In( z) � 1

π

∫ π

0
ez cos(θ) cos( nθ ) dθ , n ∈ N (57)

Furthermore, in these dimensions every rotation acts on a
single 2D subspace, and hence is described by a single rota-
tion angle. Letting θ � ∠( MTX ), it follows from (52) and
(55) that the distribution over θ induced by Langevin( M , κ)
has a density satisfying

p( θ ; κ)∝ exp( 2κ cos( θ ) ) , θ ∈ [−π , π ) (58)

Now recall that the von Mises distribution on the circle
(here identified with [−π , π )) with mode μ ∈ [−π , π ) and
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Fig. 6. The von Mises distribution. This plot shows the densi-
ties (59) of several von Mises distributions on the circle (here
identified with [−π , π )) with common mode μ = 0 and varying
concentrations λ. For λ = 0 the von Mises distribution reduces to
the uniform distribution, and its density asymptotically converges
to the Gaussian N ( 0, λ−1) as λ →∞.

concentration parameter λ ≥ 0, denoted by vM( μ, λ), is the
distribution determined by the following probability density
function:

p( θ ; μ, λ)= exp( λ cos( θ − μ) )

2π I0( λ)
(59)

This distribution plays a role in circular statistics analo-
gous to that of the Gaussian distribution on Euclidean space
(Fisher, 1953). For λ = 0 it reduces to the uniform distri-
bution on S1, and becomes increasingly concentrated at the
mode μ as λ → ∞ (cf. Figure 6). In fact, considering the
asymptotic expansion (Olver et al., 2016, 10.40.1):

I0( λ)∼ exp( λ)√
2πλ

, λ →∞ (60)

and the second-order Taylor series expansion of the cosine
function:

cos( θ − μ)∼ 1− 1

2
( θ − μ)2 , θ → μ (61)

it follows from (59)–(61) that

p( θ ; μ, λ)∼ 1√
2πλ−1

exp

(
− ( θ − μ)2

2λ−1

)
, λ →∞

(62)
which we recognize as the density for the Gaussian distri-
bution N ( μ, λ−1).

These observations lead to a particularly convenient gen-
erative description of the isotropic Langevin distribution
in dimensions 2 and 3: namely, a realization of X ∼
Langevin( M , κ) is obtained by perturbing the mode M by a
rotation through an angle θ ∼ vM( 0, 2κ) about a uniformly
distributed axis (Algorithm 4). Furthermore, it follows from

Algorithm 4 A sampler for the isotropic Langevin distribu-
tion on SO( d) in dimensions 2 and 3
Input: Mode M ∈ SO( d) with d ∈ {2, 3}, concentration

parameter κ ≥ 0.
Output: A realization of X ∼ Langevin( M , κ).

1: function SAMPLEISOTROPICLANGEVIN(M , κ)
2: Sample a rotation angle θ ∼ vM( 0, 2κ).1

3: if d = 2 then
4: Set perturbation matrix P ← R( θ ).
5: else ! d = 3
6: Sample an axis of rotation v̂ ∼ U( S2).
7: Set perturbation matrix P ← exp( θ [v̂]×).
8: end if
9: return MP

10: end function

(59) that the standard deviation of the angle θ of the relative
rotation between M and X is given by

SD[θ ] =
√∫ π

−π

θ2
exp( 2κ cos( θ ) )

2π I0( 2κ)
dθ (63)

which provides a convenient and intuitive measure of the
dispersion of Langevin( M , κ). The right-hand side of (63)
can be efficiently evaluated to high precision via numeri-
cal quadrature for values of κ less than 150 (correspond-
ing to an angular standard deviation of 3.31◦). For κ >

150, one can alternatively use the estimate of the angu-
lar standard deviation coming from the asymptotic Gaus-
sian approximation (62) for the von Mises distribution
vM( 0, 2κ):

SD[θ ] ∼ 1√
2κ

, κ →∞ (64)

This approximation is accurate to within 1% for κ > 12.87
(corresponding to an angular standard deviation of 11.41◦)
and to within .1% for κ > 125.3 (corresponding to an
angular standard deviation of 3.62◦).

Appendix B. Reformulating the estimation
problem

B.1. Deriving Problem 2 from Problem 1

In this section, we show how to derive Problem 2 from Prob-
lem 1. Using the fact that vec( v)= v for any v ∈ R

d×1 and
the fact that vec( XY ) = ( Y T ⊗ Ik) vec( X ) for all X ∈ R

m×k

and Y ∈ R
k×l (Horn and Johnson, 1991, Lemma 4.3.1), we

1. See e.g. (Best and Fisher, 1979)
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can write each summand of (12) in a vectorized form as

τij

∥∥tj − ti − Rit̃ij
∥∥2

2
= τij

∥∥∥tj − ti −
(

t̃Tij ⊗ Id

)
vec( Ri)

∥∥∥2

2

=
∥∥∥∥∥(
√

τijId) tj−(
√

τijId) ti

−√τij

(
t̃Tij ⊗ Id

)
vec( Ri)

∥∥∥∥∥
2

2
(65)

and

κij

∥∥Rj − RiR̃ij

∥∥2

F
= κij

∥∥vec( Rj)− vec( RiR̃ij)
∥∥2

2

=
∥∥∥∥∥√κij( Id ⊗ Id) vec( Rj)

−√κij

(
R̃T

ij ⊗ Id

)
vec( Ri)

∥∥∥∥∥
2

2

(66)

Letting t ∈ R
dn and R ∈ R

d×dn denote the concatenations
of the ti and Ri as defined in (17), (65) and (66) imply that
(12) can be rewritten in a vectorized form as

p∗MLE = min
t∈Rdn

R∈SO(d)n

∥∥∥∥B

(
t

vec( R)

)∥∥∥∥2

2

(67)

where the coefficient matrix B ∈ R
(d+d2)m×(d+d2)n (with

m = | �E |) has the block decomposition

B �
(

B1 B2

0 B3

)
(68)

and B1 ∈ R
dm×dn, B2 ∈ R

dm×d2n, and B3 ∈ R
d2m×d2n are

block-structured matrices whose block rows and columns
are indexed by the elements of �E and V , respectively, and
whose ( e, k)-block elements are given by

( B1)ek =

⎧⎪⎨
⎪⎩
−√τkjId , e = ( k, j)∈ �E√

τikId , e = ( i, k)∈ �E
0d×d , otherwise

(69a)

( B2)ek =
{
−√τkj

(
t̃Tkj ⊗ Id

)
, e = ( k, j)∈ �E

0d×d2 , otherwise
(69b)

( B3)ek =

⎧⎪⎪⎨
⎪⎪⎩
−√κkj

(
R̃T

kj ⊗ Id

)
, e = ( k, j)∈ �E

√
κik( Id ⊗ Id) , e = ( i, k)∈ �E

0d×d , otherwise

(69c)

We can further expand the squared �2-norm objective in
(67) to obtain:

p∗MLE = min
t∈Rdn

R∈SO(d)n

(
t

vec( R)

)T

BTB

(
t

vec( R)

)
(70)

with

BTB =
(

BT
1 B1 BT

1 B2

BT
2 B1 BT

2 B2 + BT
3 B3

)
(71)

Computing each of the constituent products in (71) block-
wise using (69) (cf. Rosen et al., 2017, equations (72)–
(84)), we obtain

BT
1 B1 = L( W τ )⊗Id (72a)

BT
1 B2 = Ṽ ⊗ Id (72b)

BT
2 B2 = �̃ ⊗ Id (72c)

BT
3 B3 = L( G̃ρ)⊗Id (72d)

where L( W τ ), Ṽ , �̃, and L( G̃ρ) are as defined in Equations
(13a), (15), (16), and (14), respectively. This establishes that
BTB = M ⊗ Id , where M is the matrix defined in (18b), and
consequently that Problem 1 is equivalent to Problem 2.

B.2. Deriving Problem 3 from Problem 2

In this section, we show how to analytically eliminate the
translations t appearing in Problem 2 to obtain the sim-
plified form of Problem 3. We make use of the follow-
ing lemma (cf. Boyd and Vandenberghe (2004, Appendix
A.5.5) and Gallier (2010, Proposition 4.2)).

Lemma 4. Given A ∈ Sym( p) and b ∈ R
p, the function

f ( x)= xTAx+ 2bTx (73)

attains a minimum if and only if A � 0 and ( Id−AA
†
) b = 0,

in which case
min
x∈Rp

f ( x)= −bTA
†
b (74)

and

argmin
x∈Rp

f ( x)=
{
−A

†
b+ U

(
0
z

)
| z ∈ R

p−r

}
(75)

where A = U�UT is an eigendecomposition of A and r =
rank( A).

Now L( W τ )⊗Id � 0 as L( W τ ) is a (nec-
essarily positive semidefinite) graph Laplacian, and
Idn−( L( W τ )⊗Id) ( L( W τ )⊗Id)† is the orthogonal projec-
tion operator onto ker

(
( L( W τ )⊗Id)T

) = ker( L( W τ )⊗Id)
(Meyer, 2000, equation (5.13.12)). Using the relation
vec( AYC) = ( CT ⊗ A) vec( Y ) (Horn and Johnson, 1991,
Lemma 4.3.1), we find that y ∈ ker( L( W τ )⊗Id) if and only
if y = vec( Y ) for some Y ∈ R

d×n satisfying YL( W τ )= 0,
or equivalently L( W τ ) Y T = 0. As G is connected, then
ker( L( W τ ) )= span{1n}, and therefore we must have Y T =
1ncT ∈ R

n×d for some c ∈ R
d . Altogether, this establishes

that
ker( L( W τ )⊗Id)= {

vec
(
c1T

n

) | c ∈ R
d
}

(76)

Now let b = ( Ṽ⊗Id) vec( R); we claim that b ⊥ y for all y =
vec( Y )∈ ker( L( W τ )⊗Id). To see this, observe that b =
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vec( RṼT) and, therefore, 〈b, y〉2 = 〈RṼT, Y 〉F = tr( YṼRT).
However, 1T

n Ṽ = 0 because the sum down each column of
Ṽ is identically 0 by (15), and therefore YṼ = 0 by (76).
This establishes that b ⊥ ker( L( W τ )⊗Id) for any value
of R.

Consequently, if we fix R ∈ SO( d)n and consider per-
forming the optimization in (19) over the decision variables
t only, we can apply Lemma 4 to compute the optimal value
of the objective and a minimizing value t∗ of t as functions
of R. This in turn enables us to analytically eliminate t from
(19), producing the equivalent optimization problem (77),

p∗MLE = min
R∈SO(d)

vec( R)T ( ( L( G̃ρ)+�̃ − ṼT

L( W τ )† Ṽ )⊗Id) vec( R) (77)

with a corresponding optimal estimate t∗ given by

t∗ = − (
L( W τ )† Ṽ ⊗ Id

)
vec( R∗) (78)

Rewriting (77) and (78) in a more compact matricized form
gives (20) and (21), respectively.

B.3. Simplifying the translational data matrix

In this section, we derive the simplified form of the trans-
lational data matrix Q̃τ given in (24c) from that originally
presented in (20b). To begin, recall from Appendix B.1 that

Q̃τ ⊗ Id =
(
�̃ − ṼTL( W τ )† Ṽ

)
⊗ Id

= BT
2 B2 − BT

2 B1
(
BT

1 B1
)†

BT
1 B2

= BT
2

(
Idm − B1

(
BT

1 B1
)†

BT
1

)
B2

(79)

where B1 and B2 are the matrices defined in (69a) and (69b),
respectively. Using 	 and T̃ as defined in (22) and (23),
respectively, we may write B1 and B2 alternatively as

B1 = 	
1
2 AT ⊗ Id , B2 = 	

1
2 T̃ ⊗ Id (80)

where A � A( �G) is the incidence matrix of �G. Substituting
(80) into (79), we derive as shown in (81),

Q̃τ ⊗ Id = BT
2

(
Idm − B1( BT

1 B1)† BT
1

)
B2

= BT
2

(
Idm −

(
	

1
2 AT ⊗ Id

)((
	

1
2 AT ⊗ Id

)T (
	

1
2 AT ⊗ Id

))† (
	

1
2 AT ⊗ Id

)T
)

B2

= BT
2

(
Idm −

(
	

1
2 AT ⊗ Id

) ((
A	AT)† ⊗ Id

) (
	

1
2 AT ⊗ Id

)T
)

B2

= BT
2

(
Idm −

(
	

1
2 AT (

A	AT)†
A	

1
2

)
⊗ Id

)
B2

= BT
2

[(
Im −	

1
2 AT (

A	AT)†
A	

1
2

)
⊗ Id

]
B2

=
(

T̃T	
1
2

(
Im −	

1
2 AT (

A	AT)†
A	

1
2

)
	

1
2 T̃

)
⊗ Id

(81)

or, equivalently,

Q̃τ = T̃T	
1
2

(
Im −	

1
2 AT (

A	AT)†
A	

1
2

)
︸ ︷︷ ︸




	
1
2 T̃ (82)

Now let us develop the term 
 appearing in (82):


 = Im −	
1
2 AT (

A	AT)†
A	

1
2

= Im −
(

A	
1
2

)T
((

A	
1
2

) (
A	

1
2

)T
)† (

A	
1
2

)
= Im −

(
A	

1
2

)† (
A	

1
2

) (83)

where we have used the fact that X T( XX T)†= X † for any
matrix X in passing from line 2 to line 3 above. We may
now recognize the final line of (83) as the matrix of the

orthogonal projection operator π : R
m → ker( A	

1
2 ) onto

the kernel of the weighted incidence matrix A	
1
2 (Meyer,

2000, equation (5.13.12)). Equation (24c) thus follows from
(82) and (83).

Finally, although 
 is generically dense, we now show
that it admits a computationally convenient decomposi-
tion in terms of sparse matrices and their inverses. By the

Fundamental Theorem of Linear Algebra, ker( A	
1
2 )⊥ =

image( 	
1
2 AT), and therefore every vector v ∈ R

m admits
the orthogonal decomposition:

v = π ( v)+c, π ( v)∈ ker( A	
1
2 ) , c ∈ image( 	

1
2 AT)

(84)

Now rank( A)= n − 1 because A is the incidence matrix
of the weakly connected directed graph �G; it follows that

image( 	
1
2 AT)= image( 	

1
2 AT), where A is the reduced

incidence matrix of �G formed by removing the final row
of A. Furthermore, as c is the complement of π ( v) in the
orthogonal decomposition (84), it is itself the orthogonal

projection of v onto image( 	
1
2 AT)= image( 	

1
2 AT), and is

therefore the value of the product realizing the minimum
norm in

min
w∈Rn−1

‖v−	
1
2 ATw‖2 (85)

Consequently, it follows from (84) and (85) that

π ( v) = v−	
1
2 ATw∗

w∗ = argmin
w∈Rn−1

‖v−	
1
2 ATw‖2

(86)
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As A is full-rank, we can solve for the minimizer w∗ in (86)
via the normal equations, obtaining

w∗ = (
A	AT)−1

A	
1
2 v = L−TL−1A	

1
2 v (87)

where A	
1
2 = LQ1 is a thin LQ decomposition of the

weighted reduced incidence matrix A	
1
2 . Substituting (87)

into (86), we obtain

π ( v) = v−	
1
2 ATL−TL−1A	

1
2 v

=
(

Im −	
1
2 ATL−TL−1A	

1
2

)
v

(88)

As v was arbitrary, we conclude that the matrix in paren-
theses on the right-hand side of (88) is 
, which gives
(39).

B.4. Deriving Problem 7 from Problem 6

This derivation is a straightforward application of the dual-
ity theory for semidefinite programs (Vandenberghe and
Boyd, 1996). Letting λiuv ∈ R denote the ( u, v)-element
of the ith diagonal block of � for i = 1, . . . , n and 1 ≤
u ≤ v ≤ d, we can rewrite Problem 6 in the primal standard
form of Vandenberghe and Boyd (1996, equation (1)) as

−p∗SDP = min
λ∈R

d(d+1)
2 n

cTλ

s.t. F( λ)� 0
(89)

with the problem data in (89) given explicitly by

F( λ) � F0 +
n∑

i=1

∑
1≤u≤v≤d

λiuvFiuv

F0 = Q

Fiuv =
{
−Diag( ei)⊗Euu, u = v

−Diag( ei)⊗( Euv + Evu) , u = v

ciuv =
{
−1, u = v

0, u = v

(90)

The standard dual problem for (89) is then (cf. Vanden-
berghe and Boyd, 1996, equations (1) and (27)):

−d∗SDP = max
Z∈Sym(dn)

− tr( F0Z)

s.t. tr (FiuvZ) = ciuv

Z � 0

(91)

for all i ∈ {1, . . . , n} and 1 ≤ u ≤ v ≤ d. Comparing (91)
with (90) reveals that the equality constraints are satisfied
precisely when the ( d × d)-block-diagonal of Z is com-
posed of identity matrices, which gives the form of Problem
7. Furthermore, as Q̃ − � 	 0 for any � = −sIdn with
s > ‖Q̃‖2 is strictly feasible for Problem 6 (hence, also
(89)) and Idn 	 0 is strictly feasible for (91), Theorem 3.1
of Vandenberghe and Boyd (1996) implies that the optimal
sets of (89) and (91) are non-empty, and that strong duality
holds between them (so that the optimal value of Problem 7
is p∗SDP, as claimed).

Appendix C. Proof of Proposition 2

In this section, we prove Proposition 2, following the gen-
eral roadmap of the proof of a similar result for the spe-
cial case of angular synchronization due to Bandeira et al.
(2017). At a high level, our approach is based upon exploit-
ing the Lagrangian duality between Problems 5 and 7 to
identify a matrix C (constructed from an optimal solu-
tion R∗ of Problem 5) with the property that C � 0 and
rank( C)= dn − d imply that Z∗ = R∗TR∗ is the unique
optimal solution of Problem 7; we then show that these con-
ditions can be assured by controlling the magnitude of the
deviation �Q � Q̃−Q of the observed data matrix Q̃ from
its exact latent value Q. Specifically, our proof proceeds
according to the following chain of reasoning:

1. We begin by deriving the first-order necessary optimal-
ity conditions for the extrinsic formulation of Prob-
lem 5; these take the form ( Q̃ − �∗) R∗T = 0,
where R∗ ∈ O( d)n is a minimizer of Problem 5 and
�∗ = SymBlockDiagd( Q̃R∗TR∗) is a symmetric block-
diagonal matrix of Lagrange multipliers corresponding
to the orthogonality constraints in (26).

2. Exploiting the Lagrangian duality between Problems 5
and 7 together with non-degeneracy results for semidef-
inite programs (Alizadeh et al., 1997), we identify a
matrix C � Q̃ − �∗ with the property that C � 0 and
rank( C)= dn− d imply that Z∗ = R∗TR∗ is the unique
optimal solution of Problem 7 (Theorem 7).

3. We next observe that for the idealized case in which the
measurements x̃ij of the relative transforms are noise-
less, the true latent rotations R comprise a minimizer
of Problem 5 with corresponding certificate C = Q �
L( Gρ). We then show (by means of similarity) that the
spectrum of L( Gρ) consists of d copies of the spec-
trum of the rotational weight graph Wρ ; in particular,
L( Gρ) has d eigenvalues equal to 0, and the remaining
d( n − 1) are lower-bounded by the algebraic connec-
tivity λ2( L( Wρ) ) > 0 of Wρ . Consequently, C � 0,
and rank( C)= dn − d as R ∈ ker Q = ker C. It fol-
lows that Problem 7 is always exact in the absence of
measurement noise (Theorem 10).

4. In the presence of noise, the minimizer R∗ ∈ O( d)n

of Problem 5 will generally not coincide with the true
latent rotations R ∈ SO( d)n. Nevertheless, we can still
derive an upper bound for the error in the estimate R∗ in
terms of the magnitude of the deviation �Q � Q̃−Q of

the data matrix Q̃ from the true latent value Q (Theorem
12).

5. The first-order necessary optimality condition for Prob-
lem 5 (point 1 above) can alternatively be read as
CR∗T = 0, which shows that d eigenvalues of C are
always 0. Since in general the eigenvalues of a matrix X
are continuous functions of X , it follows from points
3 and 4 above and the definition of C that the other
d( n−1) eigenvalues of C can be controlled into remain-
ing non-negative by controlling the norm of �Q. In light
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of point 2, this establishes the existence of a constant
β1 > 0 such that, if ‖Q̃− Q‖2 < β1, Z∗ = R∗TR∗ is the
unique solution of Problem 7.

6. Finally, we observe that because O( d) is the disjoint
union of two components separated by a distance

√
2

in the Frobenius norm, and the true latent rotations
Ri all lie in the +1 component, it follows from point
4 that there exists a constant β2 > 0 such that, if
‖Q̃ − Q‖2 < β2, a minimizer R∗ ∈ O( d)n of Prob-
lem 5 must in fact lie in SO( d)n, and is therefore also a
minimizer of Problem 4.

7. Taking β � min{β1, β2}, Proposition 2 follows from
points 5 and 6 and Theorem 1.

The remainder of this appendix is devoted to rigorously
establishing each of claims 1–7 above.

C.1. Gauge symmetry and invariant metrics for
Problems 4 and 5

A critical element of the proof of Proposition 2 is the deriva-
tion of an upper bound for the estimation error of a min-
imizer R∗ of Problem 5 as a function of �Q (point 4).
However, we have observed previously that Problems 1–5
always admit multiple (in fact, infinitely many) solutions
for dimensions d ≥ 2 due to gauge symmetry.2 In con-
sequence, it may not be immediately clear how we should
quantify the estimation error of a particular point estimate
R∗ obtained as a minimizer of Problem 4 or Problem 5,
since R∗ is an arbitrary representative of an infinite set of
distinct but equivalent minimizers that are related by gauge
transforms. To address this complication, in this section we
study the gauge symmetries of Problems 4 and 5, and then
develop a pair of gauge-invariant metrics suitable for quan-
tifying estimation error in these problems in a consistent,
“symmetry-aware” manner.

Recall from Section 3.2 (cf. note 6) that solutions of
Problem 1 are determined only up to a global gauge sym-
metry (corresponding to the diagonal left-action of SE( d)
on SE( d)n). Similarly, it is straightforward to verify that if
R∗ is any minimizer of (24) (respectively (25)), then G • R∗

also minimizes (24) (respectively (25)) for any choice of
G ∈ SO( d) (respectively G ∈ O( d)), where • is the
diagonal left-action of O( d) on O( d)n:

G • R �( GR1, . . . , GRn) (92)

It follows that the sets of minimizers of Problems 4 and 5
are partitioned into orbits of the form

S( R) � {G • R | G ∈ SO( d) } ⊂ SO( d)n (93a)

O( R) � {G • R | G ∈ O( d) } ⊂ O( d)n (93b)

each of which comprise a set of point estimates that are
equivalent to R for the estimation problems (24) and (25),
respectively. Consequently, when quantifying the dissimi-
larity between a pair of feasible points X , Y for Problem 4

or 5, we are interested in measuring the distance between
the orbits determined by these two points, not the dis-
tance between the specific representatives X and Y them-
selves (which may, in fact, represent equivalent solutions,
but differ in their assignments of coordinates by a global
gauge symmetry). We therefore introduce the following
orbit distances:

dS ( X , Y ) � min
G∈SO(d)

‖X −G•Y‖F , X , Y ∈ SO( d)n (94a)

dO( X , Y ) � min
G∈O(d)

‖X − G • Y‖F , X , Y ∈ O( d)n (94b)

these functions report the Frobenius norm distance between
the two closest representatives of the orbits (93) in SO( d)n

and O( d)n determined by X and Y , respectively. Using
the orthogonal invariance of the Frobenius norm, it is
straightforward to verify that these functions satisfy

dS ( X , Y )= dS ( G1 • X , G2 • Y )∀X , Y ∈ SO( d)n ,

G1, G2 ∈ SO( d) (95a)

dO( X , Y )= dO( G1 • X , G2 • Y )∀X , Y ∈ O( d)n ,

G1, G2 ∈ O( d) (95b)

i.e. they define notions of dissimilarity between feasible
points of Problems 4 and 5, respectively, that are invari-
ant with respect to the action of the gauge symmetries for
these problems, and so provide a consistent, gauge-invariant
means of quantifying the estimation error.3

The following result enables us to compute these dis-
tances easily in practice.

2. Recall that SO( 1)= {+1}, so for d = 1 Problems 3 and 4 admit only
the (trivial) solution R∗ = ( 1, . . . , 1). Similarly, O( 1)= {±1}, so for d = 1
Problem 5 admits pairs of solutions related by multiplication by −1.

3. We remark that although the formulation of the distance functions
presented in (94) may at first appear somewhat ad hoc, one can jus-
tify this choice rigorously using the language of Riemannian geom-
etry (Boothby, 2003; Kobayashi and Nomizu, 1996). As the Frobe-
nius norm distance is orthogonally invariant, the diagonal left-actions
(92) of SO( d) on SO( d)n and O( d) on O( d)n are isometries, and are
trivially free and proper; consequently, the quotient spaces MS �
SO( d)n / SO( d) and MO � O( d)n / O( d) obtained by identifying
the elements of the orbits (93) are manifolds, and the projections
πS : SO( d)n→MS and πO : O( d)n→MO are submersions. Further-
more, it is straightforward to verify that the restrictions of the derivative
maps d( πS )R : TR( SO( d)n )→ T[R](MS ) and d( πO)R : TR( O( d)n )→
T[R](MO) to the horizontal spaces HR( SO( d)n ) � ker( d( πS )R )⊥ and

HR( O( d)n ) � ker( d( πO)R )⊥ are linear isometries onto T[R](MS ) and
T[R](MO), respectively, and therefore induce well-defined Riemannian
metrics on the quotient spaces MS and MO from the Riemannian met-
rics on the total spaces SO( d)n and O( d)n, with corresponding distance
functions dMS ( ·, ·), dMO ( ·, ·), respectively. The functions dS ( ·, ·) and
dO( ·, ·) defined in (94) are then simply the functions that report the dis-
tances between the images of X and Y after projecting them to these
quotient spaces: dS ( X , Y )= dMS ( πS ( X ) , πS ( Y ) ) and dO( X , Y )=
dMO ( πO( X ) , πO( Y ) ). Consequently, these are, in fact, the canoni-
cal distance functions for comparing points in SO( d)n and O( d)n while
accounting for the gauge symmetry (92).
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Theorem 5 (Computing the orbit distance). Given X , Y ∈
O( d)n, let

XY T = U�VT (96)

be a singular value decomposition of XY T with � =
Diag( σ1, . . . , σd) and σ1 ≥ · · · ≥ σd ≥ 0. Then the orbit
distance dO( X , Y ) between O( X ) and O( Y ) in O( d)n is

dO( X , Y )=
√

2dn− 2‖XY T‖∗ (97)

and a minimizer G∗
O ∈ O( d) realizing this optimal value in

(94b) is given by
G∗

O = UVT. (98)

If, in addition, X , Y ∈ SO( d), then the orbit distance
dS ( X , Y ) between S( X ) and S( Y ) in SO( d)n is given by

dS ( X , Y )=
√

2dn− 2 tr( Ξ�) (99)

where Ξ is the matrix

Ξ = Diag
(
1, . . . , 1, det( UVT)

) ∈ R
d×d (100)

and a minimizer G∗
S ∈ SO( d) realizing this optimal value

in (94a) is given by

G∗
S = UΞVT (101)

Proof. Observe that

‖X − G • Y‖2
F =

n∑
i=1

‖Xi − GYi‖2
F

= 2dn− 2
n∑

i=1

〈Xi, GYi〉F

= 2dn− 2

〈
G,

n∑
i=1

XiY
T
i

〉
F

= 2dn− 2
〈
G, XY T〉

F

(102)

Consequently, a minimizer G∗
O ∈ O( d) attaining the

optimal value in (94b) is determined by

G∗
O ∈ argmax

G∈O(d)

〈
G, XY T〉

F
(103)

However, we may now recognize (103) as an instance of
the orthogonal Procrustes problem, with maximizer G∗

O
given by (98) (Hanson and Norris, 1981; Umeyama, 1991).
Substituting (96) and (98) into (102) and simplifying the
resulting expression using the orthogonal invariance of the
Frobenius inner product then shows that the orbit distance
dO( X , Y ) is

dO( X , Y )=
√

2dn− 2 tr( �) =
√

2dn− 2‖XY T‖∗ (104)

which is (97). If, in addition, X , Y ∈ SO( d), then (102)
implies that a minimizer G∗

S ∈ SO( d) attaining the optimal
value in (94a) is determined by

G∗
S ∈ argmax

G∈SO(d)

〈
G, XY T〉

F
(105)

Equation (105) is an instance of the special orthogonal Pro-
crustes problem, with a maximizer G∗

S ∈ SO( d) given by
(101) (Hanson and Norris, 1981; Umeyama, 1991). Substi-
tuting (96) and (101) into (102) and once again simplify-
ing the resulting expression using the orthogonal invariance
of the Frobenius inner product then shows that the orbit
distance dS ( X , Y ) is given by (99).

C.2. A sufficient condition for exact recovery in
Problem 5

In this section, we address points 1 and 2 in our roadmap,
deriving sufficient conditions to ensure the recovery of a
minimizer R∗ ∈ O( d)n of Problem 5 by means of solving
the dual semidefinite relaxation Problem 7. Our approach
is based upon exploiting the Lagrangian duality between
Problem 5 and Problems 6 and 7 to construct a matrix C
whose positive semidefiniteness serves as a certificate of
optimality for Z∗ = R∗TR∗ as a solution of Problem 7.

We begin by deriving the first-order necessary optimality
conditions for (25).

Lemma 6 (First-order necessary optimality conditions for
Problem 5). If R∗ ∈ O( d)n is a minimizer of Problem 5,
then there exists a matrix �∗ ∈ SBD( d, n) such that

( Q̃−�∗) R∗T = 0 (106)

Furthermore, �∗ can be computed in closed-form accord-
ing to

�∗ = SymBlockDiagd

(
Q̃R∗TR∗

)
(107)

Proof. If we consider (25) as an unconstrained minimiza-
tion of the objective F( R) � tr( Q̃RTR) over the Riemannian
manifold O( d)n, then the first-order necessary optimality
condition is simply that the Riemannian gradient grad F
must vanish at the minimizer R∗:

grad F( R∗)= 0 (108)

Furthermore, if we consider O( d)n as an embedded sub-
manifold of R

d×dn, then this embedding induces a sim-
ple relation between the Riemannian gradient grad F of F
viewed as a function restricted to O( d)n⊂ R

d×dn and ∇F,
the gradient of F considered as a function on the ambient
Euclidean space R

d×dn. Specifically, we have

grad F( R)= ProjR ∇F( R) (109)

where ProjR : TR( R
d×dn)→ TR( O( d)n ) is the orthogonal

projection operator onto the tangent space of O( d)n at R
(Absil et al., 2008, equation (3.37)); this latter is given
explicitly by

ProjR : TR

(
R

d×dn
)→ TR (O( d)n )

ProjR( X ) = X − R SymBlockDiagd( RTX )
(110)
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Straightforward differentiation shows that the Euclidean
gradient is ∇F( R)= 2RQ̃, and consequently (108)–(110)
imply that

0 = ProjR∗ ∇F( R∗)

= 2R∗Q̃− 2R∗ SymBlockDiagd

(
R∗TR∗Q̃

) (111)

Dividing both sides of (111) by two and taking the transpose
produces (106), using the definition of �∗ given in (107).

Despite its simplicity, it turns out that Lemma 6 is actu-
ally already enough to enable the derivation of sufficient
conditions to ensure the exactness of the semidefinite relax-
ation Problem 7 with respect to Problem 5. Comparing
(106) with the extrinsic formulation (26) of Problem 5,
we may recognize �∗ as nothing more than a matrix of
Lagrange multipliers corresponding to the orthogonality
constraints RT

i Ri = Id . Consequently, in the case that exact-
ness holds between Problems 5 and 7 (i.e. that Z∗ = R∗TR∗

is a minimizer of Problem 7), strong duality obtains a for-
tiori between Problems 5 and 6, and therefore �∗ also
comprises an optimal solution for the Lagrangian relaxation
(32) (cf. e.g. Boyd and Vandenberghe, 2004, Section 5.5.3).
It follows that Q̃ − �∗ � 0 (as �∗ is a fortiori feasible for
Problem 6 if it is optimal), and ( Q̃ − �∗) Z∗ = 0 (from
the definition of Z∗ and (106)). However, observe now that
these last two conditions are precisely the first-order nec-
essary and sufficient conditions for Z∗ to be an optimal
solution of Problem 7 (cf. Vandenberghe and Boyd, 1996,
equation (33)); furthermore, they provide a closed-form
expression for a KKT certificate for Z∗ (namely, Q̃ − �∗)
in terms of a minimizer R∗ of Problem 5 using (107). The
utility of this expression is that, although it was originally
derived under the assumption of exactness, it can also be
exploited to derive a sufficient condition for same, as shown
in the next theorem.

Theorem 7 (A sufficient condition for exact recovery in
Problem 5). Let R∗ ∈ O( d)n be a minimizer of Problem
5 with corresponding Lagrange multiplier matrix �∗ ∈
SBD( d, n) as in Lemma 6, and define

C � Q̃−�∗ (112)

If C � 0, then Z∗ = R∗TR∗ is a minimizer of Problem 7.
If, in addition, rank( C)= dn − d, then Z∗ is the unique
minimizer of Problem 7.

Proof. Since C = Q̃−�∗ � 0 by hypothesis, and Equation
(106) of Lemma 6 implies that

( Q̃−�∗) Z∗ = ( Q̃−�∗)
(

R∗TR∗
)
= 0, (113)

�∗ and Z∗ satisfy the necessary and sufficient conditions
characterizing primal–dual pairs of optimal solutions for
the strictly feasible primal–dual pair of semidefinite pro-
grams (32) and (33) (cf. Vandenberghe and Boyd, 1996,

Appendix B.4 and Theorem 3.1). In other words, C � 0
certifies the optimality of Z∗ as a solution of Problem 7.

Now suppose further that rank( C)= dn−d; we establish
that Z∗ is the unique solution of Problem 7 using non-
degeneracy results from Alizadeh et al. (1997). Specifically,
we observe that the equivalent formulations (91) and (89)
of Problems 7 and 6 derived in Appendix B.4 match the
forms of the primal and dual semidefinite programs given
in equations (2) and (3) of Alizadeh et al. (1997), respec-
tively. Consequently, Theorem 10 of Alizadeh et al. (1997)
guarantees that Problem 7 has a unique solution provided
that we can exhibit a dual non-degenerate solution of Prob-
lem 6. As we have already identified �∗ as a solution of
Problem 6 (via (113)), it suffices to show that �∗ is dual
non-degenerate. To that end, let

Q̃−�∗ = (
U V

)
Diag( 0, 0, 0, σd+1, . . . , σdn)

(
U V

)T

(114)
be an eigendecomposition of Q̃ − �∗ as in equation (16)
of Alizadeh et al. (1997) (with σk > 0 for k ≥ d + 1,
U ∈ R

dn×d , and V ∈ R
dn×(dn−d)). Theorem 9 of Alizadeh

et al. (1997) states that �∗ is dual non-degenerate if and
only if {

UTΞU | Ξ ∈ SBD( d, n)
} = Sym( d) (115)

Now the matrix U appearing in (114) can be characterized
as a matrix whose columns form an orthonormal basis for
the d-dimensional null space of Q̃ − �∗. However, Equa-
tion (106) shows that the columns of R∗T span this same
subspace, and are pairwise orthogonal since R∗T is com-
posed of orthogonal blocks. Consequently, without loss of
generality we may take U = 1√

n
R∗T in (114). Now we can

write the left-hand side of (115) more explicitly as{
UTΞU | Ξ ∈ SBD( d, n)

}
=

{
1

n

n∑
i=1

R∗i ΞiR
∗
i

T | Ξ ∈ SBD( d, n)

}
(116)

and it is immediate from (116) that given any S ∈ Sym( d),
we have S = UTΞU for Ξ = Diag( nR∗1

TSR∗1, 0, . . . , 0).
This shows that (115) holds, so �∗ is a dual non-degenerate
solution of Problem 6, and we conclude that Z∗ is indeed
the unique minimizer of Problem 7, as claimed.

In short, Theorem 7 enables us to reduce the question
of the exactness of Problem 7 to the problem of verifying
the positive semidefiniteness of a certain matrix C that can
be constructed from an optimal solution of Problem 5. The
remainder of this appendix is devoted to establishing con-
ditions that are sufficient to guarantee that this latter (much
simpler) criterion is satisfied.

C.3. The noiseless case

As our first application of Theorem 7, in this section we
prove that the semidefinite relaxation Problem 7 is always
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exact in the (highly idealized) case that the measurements
x̃ij in (10) are noiseless. In addition to providing a base-
line sanity check for the feasibility of our overall strategy,
our analysis of this idealized case will also turn out to
admit a straightforward generalization that suffices to prove
Proposition 2.

To that end, let L( Gρ) and Qτ denote the rotational and
translational data matrices of the form appearing in Prob-
lem 4 constructed using the true (latent) relative trans-
forms xij appearing in (10). The following pair of lemmas
characterize several important properties of these matrices.

Lemma 8 (Exact rotational connection Laplacians). Let
L( Gρ) be the rotational connection Laplacian constructed
using the true (latent) relative rotations Rij � R−1

i Rj in
(10), Wρ the corresponding rotational weight graph, and
R ∈ SO( d)n the matrix of true (latent) rotational states.
Then the following hold:

(i) L( Wρ)⊗Id = SL( Gρ) S−1 for S = Diag( R1, . . . , Rn)∈
R

dn×dn;
(ii) λd+1( L( Gρ) )= λ2( L( Wρ) );
(iii)ker( L( Gρ) )= {RTv | v ∈ R

d}.

Proof. A direct computation using the definitions of S in
claim (i) and of L( Gρ) in (14) shows that the ( i, j)-block of
the product SL( Gρ) S−1 is given by

(
SL( Gρ) S−1

)
ij
=

⎧⎪⎨
⎪⎩

dρ
i Id , i = j

−κijId , {i, j} ∈ E
0d×d , {i, j} /∈ E

(117)

which we recognize as the ( d × d)-block description of
L( Wρ)⊗Id; this proves claim (i). For claim (ii), we observe
that L( Wρ)⊗Id and L( Gρ) have the same spectrum (since
claim (i) shows that they are similar), and the spectrum
of L( Wρ)⊗Id consists of d copies of the spectrum of
L( Wρ) (this follows from the fact that the spectra of A ∈
R

d1×d1 , B ∈ R
d2×d2 and A ⊗ B are related by λ( A ⊗ B)=

{λi( A) λj( B) | i ∈ [d1], j ∈ [d2]} (see e.g. Horn and Johnson,
1991, Theorem 4.2.12)). For claim (iii), another direct com-
putation using definition (14) shows that L( Gρ) RT = 0, and
therefore that image( RT)= {RTv | v ∈ R

d} ⊆ ker( L( Gρ) );
furthermore, dim( image( RT) )= d as rank( RT)= d (as it
has d orthonormal columns). On the other hand, claim (ii)
shows that λd+1( L( Gρ) )= λ2( L( Wρ) ) > 0 as G is con-
nected, and therefore dim( ker( L( Gρ) ) )≤ d; consequently,
image( RT) is all of ker( L( Gρ) ).

Lemma 9 (Orthogonal projections of exact measurements).
Let T ∈ R

m×dn denote the data matrix of the form (23) con-
structed using the true (latent) values of the translational
measurements tij in (10) and R ∈ SO( d)n the matrix of true

(latent) rotational states. Then 	
1
2 TRT ∈ ker 
.

Proof. It follows from (2) and the definitions of tij in (10)

and T in (23) that the product TRT ∈ R
m×d is a ( 1 × d)-

block structured matrix with rows indexed by the edges
( i, j)∈ �E and whose ( i, j)th row is given by

(
TRT)

(i,j)
= −tTijR

T
i = −

(
Ritij

)T
= tTi − tTj (118)

Now observe that the quantities tTi − tTj associated with each

edge ( i, j)∈ �E in the product TRT are realizable as differ-
ences of values ti, tj assigned to the endpoints of ( i, j), i.e.

the columns of TRT are realizable as potential differences
associated with the potential function assigning tTi to vertex
i ∈ V for all i (Biggs, 1997). Formally, we have from (118)
that

TRT = A( �G)T

⎛
⎜⎝
−tT1

...
−tTn

⎞
⎟⎠ (119)

so that the columns of TRT lie in image( A( �G)T ). It

follows that 	
1
2 TRT ∈ image( 	

1
2 A( �G)T ). However,

image( 	
1
2 A( �G)T )⊥ ker( A( �G) 	

1
2 ) by the Fundamental

Theorem of Linear Algebra, and therefore 	
1
2 TRT lies in

the kernel of the orthogonal projector 
, as claimed.

With the aid of Lemmas 8 and 9, it is now straightforward
to show that Problem 7 is always exact in the noiseless case:

Theorem 10 (Problem 7 is exact in the noiseless case).
Let Q be the data matrix of the form (24b) constructed
using the true (latent) relative transforms xij in (10). Then

Z∗ = RTR is the unique solution of the instance of Problem
7 parameterized by Q.

Proof. As L( Gρ)� 0 by Lemma 8(i) and Qτ � 0 (imme-
diate from the definition (24c)), Q = L( Gρ)+Qτ � 0
as well, and therefore the optimal value of Problem 5 sat-
isfies p∗O ≥ 0. Furthermore, RT ∈ ker( L( Gρ) ) , ker( Qτ )

by Lemmas 8(iii) and 9, respectively, so RT ∈ ker( Q) as

well. This implies that tr( QRTR)= 0, and we conclude
that R is an optimal solution of the noiseless version of
Problem 5 (as it is a feasible point that attains the lower
bound of 0 for the optimal value of Problem 5 p∗O). This
also implies rank( Q)= dn − d, since Q � L( Gρ) (and
L( Gρ) has dn− d positive eigenvalues by Lemma 8(i)) and
image( RT)⊆ ker( Q) with dim( image( RT) )= d. Finally,
a straightforward computation using Equations (107) and
(112) shows that the candidate certificate matrix corre-
sponding to the optimal solution R is C = Q. The claim
then follows from an application of Theorem 7.

In addition to providing a useful sanity check on the fea-
sibility of our overall strategy by showing that it will at
least succeed under ideal conditions, the proof of Theorem
10 also points the way towards a proof of the more gen-
eral Proposition 2, as we now describe. Observe that in the
noiseless case, the certificate matrix C = Q = L( Gρ)+Qτ
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corresponding to the optimal solution R has a spectrum
consisting of d copies of 0 and dn−d strictly positive eigen-
values that are lower-bounded by λ2( L( Wρ) ) > 0. Now,
in the more general (noisy) case, both the data matrix Q̃
and the minimizer R∗ of Problem 5 will vary as a function
of the noise added to the measurements x̃ij in (10), and in
consequence so will the matrix C. However, the first-order
condition (106) appearing in Lemma 6 can alternatively be
read as CR∗T = 0, which guarantees that C always has at
least d eigenvalues fixed to 0; furthermore, in general the
eigenvalues of a matrix X are continuous functions of X ,
and Equations (107) and (112) show that C is a continu-
ous function of Q̃ and R∗. Consequently, if we can bound
the magnitude of the estimation error dO( R, R∗) for a min-
imizer R∗ of Problem 5 as a function of the magnitude of
the noise �Q = Q̃ − Q corrupting the data matrix Q̃, then
by controlling �Q we can in turn ensure (via continuity)
that the eigenvalues of the matrix C constructed at the min-
imizer R∗ remain nonnegative, and hence Problem 7 will
remain exact.

C.4. An upper bound for the estimation error in
Problem 5

In this section, we derive an upper bound on the estima-
tion error dO( R, R∗) of a minimizer R∗ of Problem 5 as a
function of the noise �Q � Q̃ − Q corrupting the data

matrix Q̃. To simplify the derivation, in the following we
assume (without loss of generality) that R∗ is an element of
its orbit (93b) attaining the orbit distance dO( R, R∗) defined
in (94b).

To begin, the optimality of R∗ implies that

tr( Q̃RTR) = tr
(
�QRTR

)+ tr
(

QRTR
)

≥ tr
(
�QR∗TR∗

)
+ tr

(
QR∗TR∗

)
= tr

(
Q̃R∗TR∗

) (120)

Now tr( QRTR)= 0 because we showed in Appendix C.3

that image( RT)= ker( Q), and the identity tr( �QRTR)=
vec( R)T ( �Q⊗ Id) vec( R) together with the submultiplica-
tivity of the spectral norm shows that

|tr( �QRTR) | ≤ ‖�Q⊗ Id‖2

∥∥vec( R)
∥∥2

2
= ‖�Q‖2

∥∥R
∥∥2

F

= dn‖�Q‖2 (121)

(and similarly for |tr( �QR∗TR∗) |); consequently, (120) in
turn implies

2dn‖�Q‖2 ≥ tr
(

QR∗TR∗
)

(122)

We now lower-bound the right-hand side of (122) as a
function of the estimation error dO( R, R∗), thereby enabling
us to upper-bound this error by controlling ‖�Q‖2. To do
so, we make use of the following result.

Lemma 11. Fix R ∈ O( d)n⊂ R
d×dn, and let M = {WR |

W ∈ R
d×d} ⊂ R

d×dn denote the subspace of matrices
whose rows are contained in image( RT). Then

ProjV : R
dn → image( RT)

ProjV ( x)= 1

n
RTRx

(123)

is the orthogonal projection operator onto image( RT) with
respect to the usual �2 inner product on R

dn, and the
mapping

ProjM : R
d×dn → M

ProjM ( X )= 1

n
XRTR

(124)

that applies ProjV to each row of X is the orthogonal pro-
jection operator onto M with respect to the Frobenius inner
product on R

d×dn.

Proof. If x ∈ image( RT), then x = RTv for some v ∈ R
d ,

and

ProjV ( x)= 1

n
RTR( RTv)= RTv = x (125)

because RRT = nId as R ∈ O( d)n by hypothesis; this shows
that ProjV is a projection onto image( RT). To show that
ProjV is orthogonal projection with respect to the �2 inner
product on R

dn, it suffices to show that image( ProjV )⊥
ker( ProjV ). To that end, let x, y ∈ R

dn, and observe that

〈ProjV ( x) , y− ProjV ( y) 〉

=
〈

1

n
RTRx, y− 1

n
RTRy

〉
2

= 1

n

〈
RTRx, y

〉
2
− 1

n2

〈
RTRx, RTRy

〉
2

= 1

n
xTRTRy− 1

n2
xTRTRRTRy

= 0

(126)

Next, let X ∈ R
d×dn and observe that ProjM ( X )=

1
n XRTR is the matrix obtained by applying the projection
ProjV to each row of X ; this immediately implies that ProjM
is itself a projection onto M . Furthermore, given X , Y ∈
R

d×dn, we observe that〈
ProjM ( X ) , Y − ProjM ( Y )

〉
F

= 〈
ProjM ( X )T , Y T − ProjM ( Y )T 〉

F

= 〈
vec

(
ProjM ( X )T )

, vec
(
Y T − ProjM ( Y )T )〉

2

= 0

(127)

as we have already established that ProjM acts row-wise by
ProjV , which is orthogonal projection with respect to the �2

inner product.

As ker( Q)= image( RT) and dim( image( RT) )= d, it
follows from Lemma 11 that

tr
(

QR∗TR∗
)
≥ λd+1( Q) ‖P‖2

F (128)



124 The International Journal of Robotics Research 38(2-3)

where

R∗ = K + P

K = ProjM ( R∗)= 1

n
R∗RTR

P = R∗ − ProjM ( R∗)= R∗ − 1

n
R∗RTR

(129)

is an orthogonal decomposition of R∗ with respect to the
Frobenius inner product on R

d×dn, and the rows of P are
contained in image( RT)⊥ = ker( Q)⊥. Using (129), we
compute

‖K‖2
F =

1

n2
tr
(

RTRR∗TR∗RTR
)
= 1

n
tr
(

RR∗TR∗RT
)

= 1

n

∥∥∥RR∗T
∥∥∥2

F
(130)

where we have used the cyclic property of the trace and
the fact that RRT = nId . As (129) is an orthogonal
decomposition, it follows that

‖P‖2
F =

∥∥R∗
∥∥2

F
− ‖K‖2

F = dn− 1

n

∥∥∥RR∗T
∥∥∥2

F
(131)

We may therefore lower-bound ‖P‖2
F by upper-bounding

‖RR∗T‖2
F as functions of dO( R, R∗). To that end, recall that

R∗ is by hypothesis a representative of its orbit (93b) that
attains the orbit distance (94b); Theorem 5 then implies that

dO( R, R∗)2= ‖R− R∗‖2
F = 2dn− 2

d∑
i=1

σi (132)

where
RR∗T = U Diag( σ1, . . . , σd) VT (133)

is a singular value decomposition of RR∗T. It follows from
(133) and the orthogonal invariance of the Frobenius inner
product that

∥∥∥RR∗T
∥∥∥2

F
= ‖Diag( σ1, . . . , σd) ‖2

F =
d∑

i=1

σ 2
i (134)

and, therefore, (132) and (134) imply that we may obtain an
upper bound ε2 for ‖RR∗T‖2

F in terms of δ2 = dO( R, R∗)2

as the optimal value of

ε2 = max
σi≥0

d∑
i=1

σ 2
i

s.t. 2dn− 2
d∑

i=1

σi = δ2

(135)

The first-order necessary optimality condition for (135) is

2σi = −2λ (136)

for all i ∈ [d], where λ ∈ R is a Lagrange multiplier, and
therefore σ1 = · · · = σd = σ for some σ ∈ R. Solving the
constraint in (135) for σ shows that

σ = n− δ2

2d
(137)

and therefore the optimal value of the objective in (135) is

ε2 = d

(
n− δ2

2d

)2

. (138)

Recalling the original definitions of ε2 and δ2, we conclude
from (138) and (131) that

‖P‖2
F ≥ dn− d

n

(
n− dO( R, R∗)2

2d

)2

= dO( R, R∗)2−dO( R, R∗)4

4dn
(139)

Applying the inequality dO( R, R∗)2≤ 2dn (which follows
immediately from the non-negativity of the nuclear norm
in (97)), we may in turn lower-bound the right-hand side of
(139) as

dO( R, R∗)2−dO( R, R∗)4

4dn

=
(

1− dO( R, R∗)2

4dn

)
dO( R, R∗)2

≥ 1

2
dO( R, R∗)2

(140)

Finally, combining inequalities (122), (128), (139), and
(140), we obtain the following theorem.

Theorem 12 (An upper bound for the estimation error in
Problem 5). Let Q be the data matrix of the form (24b)
constructed using the true (latent) relative transforms xij =
( tij, Rij) in (10), R ∈ SO( d)n the matrix composed of the
true (latent) rotational states, and R∗ ∈ O( d)n an esti-
mate of R obtained as a minimizer of Problem 5. Then
the estimation error dO( R, R∗) admits the following upper
bound: √√√√4dn‖Q̃− Q‖2

λd+1( Q)
≥ dO( R, R∗) (141)

C.5. Finishing the proof

Finally, we complete the proof of Proposition 2 with the aid
of Theorems 7 and 12.

Proof of Proposition 2. Let R ∈ SO( d)n be the matrix of
true (latent) rotations, R∗ ∈ O( d)n an estimate of R obtained
as a minimizer of Problem 5, and assume without loss of
generality that R∗ is an element of its orbit (93b) attaining
the orbit distance dO( R, R∗) defined in (94b). Set �Q �
Q̃− Q and �R � R∗ − R, and consider the decomposition
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C = Q̃− SymBlockDiagd

(
Q̃R∗TR∗

)
=

(
Q+�Q

)
− SymBlockDiagd((

Q+�Q
)

( R+�R)T ( R+�R)
)

= Q+�Q− SymBlockDiagd⎛
⎝QRTR+�QRTR+ QRT�R+ Q�RTR

+�QRT�R+�Q�RTR+ Q�RT�R+�Q�RT�R

⎞
⎠

= Q+�Q− SymBlockDiagd

⎛
⎝�QRTR+ Q�RTR+�QRT�R

+�Q�RTR+ Q�RT�R+�Q�RT�R

⎞
⎠

︸ ︷︷ ︸
�C

(142)

of the certificate matrix C defined in (112) and (107), where
we have used the fact that image( RT)= ker( Q) in passing
from lines 2 to 3 above (cf. Lemmas 8 and 9). Observe that
the term labeled �C in (142) depends continuously upon
�Q and �R, with �C = 0 for ( �Q, �R) = ( 0, 0); fur-
thermore, �Q → 0 implies �R → 0 by Theorem 12.
It therefore follows from continuity that there exists some
β1 > 0 such that ‖�C‖2 < λd+1( Q) for all ‖�Q‖2 < β1.
Moreover, if ‖�C‖2 < λd+1( Q), it follows from (142) that

λi( C)≥ λi( Q)−‖�C‖2 > λi( Q)−λd+1( Q) (143)

and, therefore, λi( C) > 0 for i ≥ d + 1; i.e. C has
at least dn − d strictly positive eigenvalues. Furthermore,
Lemma 6 shows that CR∗T = 0, which implies that
ker( C)⊇ image( R∗T); as dim( image( R∗T) )= d, this in
turn implies that C has at least d eigenvalues equal to 0.
As this exhausts the dn eigenvalues of C, we conclude that
C � 0 and rank( C)= dn − d, and consequently Theorem
7 guarantees that Z∗ = R∗TR∗ is the unique minimizer of
Problem 7.

Now suppose further that ‖�Q‖2 < β2 with β2 �
λd+1( Q) /2dn. Then Theorem 12 implies dO( R, R∗)= ‖R−
R∗‖F <

√
2, and therefore in particular that ‖Ri − R∗i ‖F <√

2 for all i ∈ [n]. However, the +1 and −1 components of
O( d) are separated by a distance

√
2 under the Frobenius

norm, so Ri ∈ SO( d) and ‖Ri − R∗i ‖F <
√

2 for all i ∈ [n]
together imply that R∗ ∈ SO( d)n, and therefore that R∗ is in
fact an optimal solution of Problem 4 as well.

Proposition 2 then follows from the preceding paragraphs
by taking β � min{β1, β2} > 0.




