
Computational Enhancements for Certifiably Correct SLAM

David M. Rosen and Luca Carlone

Abstract—We investigate numerical and computational aspects
of the use of convex relaxation for simultaneous localization
and mapping (SLAM). Recent work has shown that convex
relaxation provides an effective tool for computing, and certifying
the correctness of, globally optimal SLAM solutions. This paper
expands upon this prior work by demonstrating how to exploit
the structure of the relaxed optimization problem to design very
fast solvers, capable of computing globally optimal trajectories
with thousands of poses in a fraction of a second. In particular,
we describe several computational enhancements for accelerating
the underlying Riemannian trust-region optimization method,
including the use of structure-exploiting matrix decomposition,
iterative linear-algebraic techniques, truncated-Newton methods,
and preconditioning strategies. We also describe methods for
accelerating the minimum-eigenvalue computation used to certify
the optimality of a recovered estimate. We have incorporated
these computational enhancements in an updated version of the
SE-Sync library, and released the corresponding code online.
Experimental results indicate that this enhanced implementation
of SE-Sync is approximately twice as fast as GTSAM, a highly
optimized, state-of-the-art library for SLAM.

I. INTRODUCTION

The ability to accurately perceive the state of the world
is a fundamental competency for autonomous systems, en-
abling such essential functions as planning, navigation, and
manipulation [44]. However, solving this perceptual prob-
lem in practice presents a formidable challenge: perception
algorithms must remain robust and reliable in the face of
sensor noise, unmodeled dynamics, and perceptual ambiguity,
while at the same time admitting efficient computation to
support real-time operation of mobile robots with limited
computational resources. In this work, we investigate the
development of perceptual algorithms that satisfy both of
these requirements, focusing in particular on the foundational
problem of pose-graph simultaneous localization and mapping
(SLAM) [42, 44].

Current state-of-the-art approaches to SLAM formulate the
inference problem as a maximum-likelihood estimation (MLE)
under an assumed probability distribution for the measurement
noise [42]. This approach is attractive from a theoretical
standpoint, due to the strong performance guarantees that
maximum-likelihood estimation affords. However, the SLAM
MLE is also high-dimensional and nonconvex, and therefore
computationally hard to solve in general. In light of this, a
major line of research in the SLAM literature has focused
on the development of fast approximate inference methods
(based upon smooth local optimization techniques) that can
efficiently recover high-quality critical points of the SLAM

D.M. Rosen is with Oculus Research, Redmond, WA 98052, USA. Email:
david.rosen@oculus.com
L. Carlone is with the Laboratory for Information & Decision Systems,
Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Email:
lcarlone@mit.edu

MLE when supplied with a good initialization. This approach
has enabled the development of remarkably performant al-
gorithms and software libraries capable of processing SLAM
problems involving tens to hundreds of thousands of poses in
real time using only a single thread on a commodity processor
[18, 23, 27, 29, 35, 36]. At the same time, however, this
restriction to local search renders these methods vulnerable to
convergence to significantly suboptimal critical points, even
for relatively low levels of measurement noise [15, 35, 37].

To address this potential pitfall, a second line of SLAM
research has studied statistical and numerical aspects of solv-
ing the SLAM MLE using smooth numerical optimization
methods. Grisetti et al. [23], Olson et al. [35], and Tron et al.
[46] present local optimization methods with larger basins of
attraction to favorable critical points. Carlone and Censi [12],
Carlone et al. [13] and Rosen et al. [37] propose initialization
techniques to bootstrap local search. Carlone [11] and Rosen
et al. [36] investigate convergence and numerical properties
of smooth optimization methods applied to the SLAM MLE.
Huang et al. [25], Wang et al. [47], and Khosoussi et al. [28]
explore the global structure and statistical properties of the
SLAM MLE itself. Finally, a very recent series of papers
[14, 15, 38, 39] have developed the first certifiably correct
SLAM algorithms; these are capable of directly computing,
and computationally certifying the correctness of, globally
optimal SLAM solutions, albeit at the cost of solving a
large-scale semidefinite program (SDP) [45] and minimum-
eigenvalue problem [22], respectively.

To date, these two lines of research (aimed at compu-
tational efficiency and global optimality, respectively) have
often proceeded in parallel. The goal of this paper is to show
that the mathematical insights gleaned from our prior work
on certifiably correct SLAM [38, 39] can be exploited to
design extremely fast globally optimal SLAM solvers, thereby
achieving the best of both worlds. Concretely, we make the
following contributions:
• We describe several design principles and computational

enhancements that enabled us to develop a fast, practical
implementation of SE-Sync, our certifiably correct SLAM
algorithm [38, 39];

• We release a new C++ implementation of SE-Sync incor-
porating these computational enhancements;1

• We experimentally evaluate our C++ implementation of
SE-Sync against GTSAM, a highly-optimized, state-of-
the-art software library for SLAM.

Additionally, many of the general design principles and
computational enhancements that we describe herein are quite
broadly applicable; consequently, beyond its immediate util-

1Available at https://github.com/david-m-rosen/SE-Sync

https://github.com/david-m-rosen/SE-Sync

ity for reporting the implementation details of the SE-Sync
algorithm, it is our hope that this paper can also serve as a
useful case study in the design and implementation of high-
performance optimization techniques.

II. A REVIEW OF CERTIFIABLY CORRECT SLAM

We begin by briefly reviewing the formulations of the pose-
graph SLAM problem and its convex relaxation that form
the basis of the SE-Sync algorithm. Interested readers are
encouraged to consult [14, 38, 39] for additional details.

A. Pose-graph SLAM

In pose-graph SLAM, one estimates the values of a set
of n unknown poses x1, . . . , xn ∈ SE(d) given m noisy
measurements of a subset of their pairwise relative transforms
xij , x−1i xj [24, 42]. We model the set of available mea-
surements using an undirected graph G = (V, E) in which
the nodes i ∈ V are in one-to-one correspondence with the
unknown poses xi and the edges {i, j} ∈ E are in one-to-
one correspondence with the set of available measurements,
and assume without loss of generality that G is connected.2

We let ~G = (V, ~E) be a directed graph obtained from G by
fixing an orientation for each of its edges, and assume that a
noisy measurement x̃ij of each relative pose xij = (tij , Rij)
is obtained by sampling from the following probabilistic
generative model:3

t̃ij =
¯
tij + tεij , tεij ∼ N

(
0, τ−1ij Id

)
,

R̃ij =
¯
RijR

ε
ij , Rεij ∼ Langevin (Id, κij) ,

∀(i, j) ∈ ~E .

(1)
Here

¯
xij = (

¯
tij ,

¯
Rij) is the true (latent) value of xij , N (µ,Σ)

denotes the standard multivariate Gaussian distribution with
mean µ ∈ Rd and covariance Σ � 0, and Langevin(M,κ)
denotes the isotropic Langevin distribution on SO(d) with
mode M ∈ SO(d) and concentration parameter κ ≥ 0 [6, 16].

Given a set of noisy measurements x̃ij sampled from the
model (1), a straightforward computation (cf. [39, Sec. 2.2])
shows that a maximum-likelihood estimate x̂MLE ∈ SE(d)n

for the states x1, . . . , xn is obtained as a minimizer of:

p∗MLE = min
ti∈Rd

Ri∈SO(d)

∑
(i,j)∈~E

{
κij‖Rj −RiR̃ij‖2F
+ τij

∥∥tj − ti −Rit̃ij∥∥22
}
. (2)

Moreover, we observe that fixing values for the orientations
R1, . . . , Rn ∈ SE(d) in (2) reduces it to the unconstrained
minimization of a convex quadratic form in the translational
states t1, . . . , tn ∈ Rd, for which we can find a closed-form
solution. This enables us to analytically eliminate the position
estimates from (2), obtaining a simplification of the SLAM

2If G is not connected, then the problem of estimating the unknown poses
x1, . . . , xn decomposes into a set of independent estimation problems that
are in one-to-one correspondence with the connected components of G; thus,
the general case is always reducible to the case of connected graphs.

3We use a directed graph to model the measurements x̃ij sampled from
(1) because the distribution of the noise corrupting the latent values

¯
xij is

not invariant under SE(d)’s group inverse operation. Consequently, we must
keep track of which state xi was the “base frame” for each measurement.

MLE involving only the orientations (cf. Appendices B.2 and
B.3 in [39] for details):

p∗MLE = min
R∈SO(d)n

tr(Q̃RTR) (3a)

Q̃ = L(G̃ρ) + T̃TΩ
1
2 ΠΩ

1
2 T̃, (3b)

where here:
• R , (R1, . . . , Rn) ∈ SO(d)n ⊂ Rd×dn is the block

matrix obtained by concatenating the orientations Ri,
• L(G̃ρ) ∈ Sym(dn) is the symmetric (d × d)-block-

structured connection Laplacian for the rotation-only
estimation problem determined by the measurements R̃ij
and measurement weights κij for (i, j) ∈ ~E [41]:

L(G̃ρ)ij ,

dρi Id, i = j,

−κijR̃ij , {i, j} ∈ E ,
0d×d, {i, j} /∈ E ,

(4a)

dρi ,
∑
e∈δ(i)

κe, (4b)

• T̃ ∈ Rm×dn is the (1× d)-block-structured translational
data matrix with rows and columns indexed by e ∈ ~E and
k ∈ V , respectively, and with (e, k)-block given by:

T̃ek ,

{
−t̃Tkj , e = (k, j) ∈ ~E ,
01×d, otherwise,

(5)

• Ω , Diag(τe1 , . . . , τem) ∈ Sym(m) is a diagonal matrix
of translational measurement precisions,

• Π ∈ Rm×m is the matrix of the orthogonal projection
operator π : Rm → ker(A(~G)Ω

1
2) onto the kernel of the

weighted incidence matrix A(~G)Ω
1
2 of ~G [4].

B. A convex relaxation for SLAM

The simplified pose-graph SLAM MLE (3) is a high-
dimensional, nonconvex nonlinear program that is computa-
tionally hard to solve in general. To overcome this difficulty,
SE-Sync employs convex relaxation; in this approach, one
modifies a difficult optimization problem to obtain a (tractable)
convex approximation, and then exploits this surrogate to
search for good solutions of the original (hard) problem.

One common approach to generating such convex relax-
ations is to employ Lagrangian duality [8, Chp. 5]. In the
specific case of the SLAM MLE (3), this strategy can be used
to derive a convex relaxation in the form of a semidefinite
program (cf. [39, Sec. 3.2] and [14, 15] for details):

p∗SDP = min
Z∈Sym(dn)

tr(Q̃Z)

s.t. Z =

Id ∗ ∗ · · · ∗
∗ Id ∗ · · · ∗
∗ ∗ Id ∗
...

...
. . .

...
∗ ∗ ∗ · · · Id

 � 0.
(6)

Comparing (3) and (6), we observe that the decision variable
R ∈ SO(d)n enters the objective in (3) only through the
product RTR, which is a positive semidefinite matrix whose
(d × d)-block-diagonal is comprised of identity matrices,
and is therefore feasible in (6); consequently, (6) can be
regarded as a relaxation of the SLAM MLE obtained by
expanding (3)’s feasible set. This immediately implies that
p∗SDP ≤ p∗MLE; i.e., the optimal value of (6) lower-bounds that
of (3). Moreover, if it so happens that a minimizer Z∗ of (6)
admits a decomposition of the form Z∗ = R∗TR∗ for some
R∗ ∈ SO(d)n, it is straightforward to verify that this R∗ is also
a minimizer of (3). The crucial fact that justifies our interest
in the relaxation (6) is that it frequently does have a minimizer
Z∗ of just this form. More precisely, we have the following:

Proposition 1 (Proposition 1 of [38]): Let
¯
Q be the matrix

of the form (3b) constructed using the true relative transforms

¯
xij = (

¯
tij ,

¯
Rij) in (1). There exists a constant β , β(

¯
Q) > 0

(depending upon
¯
Q) such that, if ‖Q̃−

¯
Q‖2 < β, then:

(i) The relaxation (6) has a unique solution Z∗, and
(ii) Z∗ = R∗TR∗, where R∗ ∈ SO(d)n is a (global)

minimizer of the simplified SLAM MLE (3).
In short, Proposition 1 guarantees that so long as the noise

corrupting the measurements x̃ij in (1) is not too large (as
measured by the spectral norm of the deviation of the data
matrix Q̃ from its ground truth value

¯
Q),4 we can recover a

global minimizer R∗ of the SLAM MLE (3) by solving the
convex relaxation (6) using any numerical method.

III. COMPUTATIONAL ENHANCEMENTS FOR CERTIFIABLY
CORRECT SLAM

As a semidefinite program, (6) can in principle be solved in
polynomial time using interior-point methods [45]. In practice,
however, the high per-iteration computational cost of general-
purpose semidefinite programming algorithms prevents these
methods from scaling effectively to problems in which the
dimension of the decision variable Z is greater than a few
thousand [45]. Unfortunately, typical instances of (6) are one
to two orders of magnitude larger than this maximum effective
problem size, and are therefore well beyond the reach of these
general-purpose techniques. To overcome this limitation, SE-
Sync employs a specialized optimization method specifically
designed to solve large-scale instances of (6) efficiently. In
this section, we summarize the general design principles and
computational enhancements that we employed in order to
implement this custom optimization procedure.

A. Exploiting problem structure

In general, the successful design of a performant optimiza-
tion algorithm crucially depends upon the effective identifica-
tion and exploitation of problem structure. Consequently, we

4While Proposition 1 is formulated as a simple existence result for β, as
a practical matter we have shown in our previous work [14, 38, 39] that
the relaxation (6) remains exact when the available measurements x̃ij in (1)
are corrupted by noise up to an order of magnitude greater than what is
typically encountered in robotics and computer vision applications; see e.g.
the discussion in footnote 11 of [39].

begin the design of our optimization procedure by investigat-
ing the structure of problem (6) more deeply.

1) Exploiting low-rank structure: The dominant computa-
tional cost in applying general-purpose semidefinite program-
ming methods to solve (6) is the need to store and manipulate
expressions involving the dense dn×dn matrix variable Z; in
particular, the O(n3) computational cost of multiplying and
factoring such matrices quickly becomes intractable as the
problem size n increases.

On the other hand, in the (typical) case that the hypotheses
of Proposition 1 are satisfied we know that the actual solution
Z∗ of (6) that we seek has a very concise description in the
factored form Z∗ = R∗TR∗ for R∗ ∈ SO(d)n. More gener-
ally, even in those cases where the hypotheses of Proposition 1
do not hold, minimizers Z∗ of (6) still typically have a rank r
not much greater than d, and therefore admit a symmetric rank
decomposition Z∗ = Y ∗TY ∗ for Y ∗ ∈ Rr×dn with r � dn.

Burer and Monteiro [9, 10] proposed an elegant approach
to exploit the fact that large-scale semidefinite programs
often admit such low-rank solutions: simply replace every
instance of the decision variable Z with a rank-r product of
the form Y TY to produce a rank-restricted version of the
original problem. This substitution has the two-fold effect of
(i) dramatically reducing the size of the search space and (ii)
rendering the positive semidefiniteness constraint redundant,
since Y TY � 0 for any choice of Y . The resulting rank-
restricted form of the problem is thus a low-dimensional
nonlinear program, rather than a semidefinite program.

2) Exploiting geometric structure: Furthermore, following
Boumal [5], we observe that after replacing Z with Y TY for
Y , (Y1, . . . , Yn) ∈ Rr×dn, the block-diagonal constraints in
(6) are equivalent to Y T

i Yi = Id, i.e., the columns of each
block Yi ∈ Rr×d form an orthonormal frame. In general, the
set of all orthonormal k-frames in Rp (k ≤ p):

St(k, p) , {Y ∈ Rp×k | Y TY = Ik} (7)

forms a smooth compact matrix manifold, called the Stiefel
manifold, which can be equipped with a Riemannian metric
induced by its embedding into Rp×k [2, Sec. 3.3.2]. Together,
these observations enable us to reduce (6) to an unconstrained,
low-dimensional rank-restricted optimization problem defined
on a product of Stiefel manifolds:

p∗SDPLR = min
Y ∈St(d,r)n

tr(Q̃Y TY). (8)

This is the optimization problem that we will actually solve.
3) Exploiting graph-theoretic structure: Simplifying (6) to

(8) obviates the need to manipulate the large, dense matrix
variable Z. However the data matrix Q̃ appearing in problems
(3), (6), and (8) is also dense and of the same order as Z,
and so presents a similar computational difficulty. Accordingly,
here we develop an analogous concise description of Q̃.

The density of Q̃ is due to the density of the orthogonal
projection matrix Π in (3b); since this matrix is ultimately
derived from the structure of a sparse graph, we might suspect

that it too should admit some kind of sparse description. And
indeed, it turns out that Π admits a sparse decomposition as:

¯
A(~G)Ω

1
2 = LQ1 (9a)

Π = Im − Ω
1
2

¯
A(~G)TL−TL−1

¯
A(~G)Ω

1
2 (9b)

where equation (9a) is a thin LQ decomposition of the
weighted reduced incidence matrix

¯
A(~G)Ω

1
2 of ~G; this result

is derived in [39, Appendix B.3]. Note that (9b) requires only
the sparse lower-triangular factor L from (9a), which can be
efficiently obtained using e.g. Givens rotations [22, Sec. 5.2.1].

4) Ensuring optimality: While the reduction from (6) to
(8) dramatically reduces the size of the search space, it comes
at the expense of (re)introducing the (nonconvex) quadratic
orthonormality constraints in (7). It may therefore not be clear
whether anything has really been gained, since it appears
that we may have simply replaced one difficult nonconvex
optimization problem with another. The following remarkable
result (adapted from Boumal et al. [7]) justifies this approach:

Proposition 2 (Proposition 2 of [38]): If Y ∗ ∈ St(d, r)n is
a (row) rank-deficient second-order critical point of (8), then
Y ∗ is a minimizer, and Z∗ = Y ∗TY ∗ is a solution of (6).

Proposition 2 immediately suggests a procedure for obtain-
ing solutions Z∗ of (6) by applying a Riemannian optimization
method to search successively higher levels r of the hierarchy
of rank-restricted relaxations (8) until a rank-deficient second-
order critical point is found.5 This algorithm is referred to as
the Riemannian Staircase [5, 7].

In light of Proposition 2, the SE-Sync algorithm implements
two main computational procedures:
• A fast Riemannian trust-region method, to rapidly iden-

tify first-order critical points Y ∗ ∈ St(d, r)n of (8),
• A fast minimum-eigenvalue computation, to determine

whether HessF (Y ∗) � 0, and thereby establish the
global optimality of Y ∗.6

The next two subsections describe the design of efficient
algorithms for each of these.

B. Designing a fast Riemannian optimization method for (8)

The basic model for superlinear smooth minimization al-
gorithms on Riemannian manifolds is Newton’s method [1]:
given a twice-continuously differentiable function f : M→ R
on a Riemannian manifoldM and an initial estimate xk ∈M
for a minimizer x∗ of f , we construct a quadratic model
function qxk

for f on the tangent space Txk
M of M at xk:

qxk
: Txk

M→ R

qxk
(η) = f(xk)+gxk

(grad f(xk), η) +
1

2
gxk

(Hxk
η, η)

(10)

5Note that since every Y ∈ St(d, r)n is row rank-deficient for r > dn,
this algorithm is guaranteed to recover an optimal solution after searching at
most dn+ 1 levels of the hierarchy (8).

6In the event that HessF (Y ∗) 6� 0, the eigenvector corresponding to the
(negative) minimum eigenvalue of HessF (Y ∗) provides a descent direction
from Y ∗ that is used to initialize the optimization for the next “stair” (8) in
the Riemannian Staircase, cf. Theorem 3.9 and Corollary 3.10 of [5].

(where gxk
: Txk

M× Txk
M→ R is the (Riemannian) inner

product on Txk
M and Hxk

: Txk
M→ Txk

M is a symmetric
approximation of the Riemannian Hessian), compute an update
step ηk ∈ Txk

M by (possibly approximately) solving the
trust-region subproblem:

ηk ∈ argmin
η∈Txk

M
qxk

(η)

s.t. gxk
(η, η) ≤ ∆2

k,
(11)

and then obtain an improved estimate xk+1 by applying a
retraction [1, Def. 2.1] Rxk

: Txk
M→M to move along the

manifold in the direction of the trust-region update step ηk:

xk+1 = Rxk
(ηk). (12)

Designing a Riemannian optimization method within this class
thus reduces to selecting specific procedures for (i) construct-
ing the Hessian approximation Hxk

in (10), (ii) solving the
trust-region subproblem in (11), and (iii) retracting along
tangent vectors as in (12).

1) A closed form for the Riemannian gradient and Hessian:
We begin the design of our optimization method by first deter-
mining closed-form expressions for the Riemannian gradient
and the action of the Riemannian Hessian of the objective
F (Y) , tr(Q̃Y TY) of (8). Considering F (Y) as a function
on the ambient Euclidean space Rr×dn, a straightforward
computation shows that its gradient and Hessian operator are:

∇F (Y) = 2Y Q̃, ∇2F (Y)[Ẏ] = 2Ẏ Q̃. (13)

Furthermore, there are simple relations between the ambient
Euclidean gradient and Hessian operator in (13) and their
Riemannian counterparts when F is viewed as a function
restricted to the embedded submanifold St(d, r)n ⊂ Rr×dn
as in (8) (cf. eqs. (3.37) and (5.15) and of [2]):

gradF (Y) = ProjY ∇F (Y)

HessF (Y)[Ẏ] = ProjY

(
∇2F (Y)[Ẏ]

)
− ProjY

(
Ẏ SymBlockDiagd

(
Y T∇F (Y)

))
,

(14)

where ProjY denotes the orthogonal projection operator onto
the tangent space of St(d, r)n at Y [21, eq. (2.3)]:

ProjY : TY
(
Rr×dn

)
→ TY (St(d, r)n)

ProjY (X) = X − Y SymBlockDiagd(Y
TX)

(15)

and SymBlockDiagd : Rdn×dn → Rdn×dn maps a dn × dn
matrix M to a (d× d)-block-diagonal matrix whose diagonal
blocks are the symmetrizations of M ’s [39, eqs. (4) & (5)].

Together, equations (3b), (9), and (13)–(15) provide an effi-
cient means of evaluating the objective F (Y), its Riemannian
gradient gradF (Y), and the action of the Riemannian Hessian
HessF (Y)[Ẏ] on a tangent vector Ẏ , via a sequence of sparse
matrix multiplications and sparse triangular solves.

2) Solving the trust-region subproblem: It is a standard
result that the trust-region step ηk defined by (11) can be
obtained by solving a linear equation of the form:

(Hxk
+ λWxk

)ηk = − grad f(xk), (16)

where λ ≥ 0 is a Lagrange multiplier associated with the
trust-region constraint in (11) and Wxk

� 0 is a weight matrix
associated with the inner product gxk

.7

If the coefficient matrix Hxk
+λWxk

can be readily factored
(using e.g. QR or Cholesky decomposition [22]), (16) can be
solved accurately and efficiently by exploiting this decom-
position. In the context of SLAM specifically, this approach
has become the de facto standard since the seminal work
of Dellaert and Kaess [17], and forms the basis of current
state-of-the-art superlinear optimization methods for solving
(2) [27, 29, 36]. However, in the specific case of problem (8),
equations (3b) and (13)–(15) imply that the Hessian appearing
in (16) will be high-rank and dense, which renders the use of
direct factorization techniques infeasible.

Alternatively, one can also solve (16) using iterative numeri-
cal methods [22, Chp. 10]. These techniques have the desirable
property that they do not require direct access to the coefficient
matrix itself; rather, they require only the ability to compute
products with this matrix. As a result, iterative approaches can
realize significant computational and memory savings versus
direct factorization methods whenever efficient procedures for
evaluating such matrix-vector products are available.

Furthermore, iterative linear solvers provide an additional
opportunity for computational acceleration when used to solve
(11) (via (16)) specifically in the context of nonlinear opti-
mization. Recall that the trust-region step ηk is obtained by
minimizing the model function qxk

, rather than f itself; as
a result, computing a higher-accuracy estimate of ηk does
not necessarily guarantee a corresponding improvement in the
reduction of f achieved when ηk is applied. This observation
motivates the design of inexact Newton methods [20]; rather
than solving each instance of (11) exactly, these techniques
merely approximate ηk to within a specified tolerance. By
dynamically adjusting this tolerance as they run, inexact
Newton methods can avoid the computational expense of
oversolving the trust-region subproblems (especially in early
iterations, where the current iterate xk may be far from the
optimum x∗, and only a relatively coarse estimate of ηk is
required to make good progress) while still guaranteeing a
superlinear convergence rate and high-accuracy estimation of
x∗. Iterative linear solvers provide a particularly elegant means
of performing this controllable approximation of (11), as they
can simply be terminated as soon as any iterate achieves
the required precision. This specific approach forms the basis
of truncated-Newton methods [19, 43], which comprise the
current state of the art for superlinear large-scale unconstrained
nonlinear programming [34, Sec. 7.1].

7This follows from a straightforward Lagrangian analysis of the trust-region
subproblem; cf. e.g. [2, Sec. 7.3.1].

In light of these considerations, we make the following
concrete selections for each of the three major elements of
our Riemannian optimization method:

(i) Hessian approximation: We use the exact Hessian;
(ii) Trust-region subproblem solver: We employ a

Riemannian adaptation [1] of Steihaug’s truncated
conjugate-gradient method [43] to solve the trust-region
subproblems (11) efficiently, using the method described
in Section III-B1 to evaluate Hessian-vector products;

(iii) Retraction: We use the thin QR decomposition-based
Q-factor retraction described in equation (4.8) of [2].

3) Preconditioning the conjugate gradient method: As a
novel contribution of this work (not present in the original
formulation of the SE-Sync algorithm [38, 39]), we show how
to further accelerate the solution of the trust-region subprob-
lems (11) by preconditioning Steihaug’s truncated conjugate-
gradient method.

Recall that the convergence rate of the conjugate gradient
method when solving a linear system Ax = b is controlled by
the condition number κ(A) of A [22, Sec. 10.2.7]. As a result,
it is possible to dramatically enhance the convergence of the
method by solving the (equivalent) linear system PAx = Pb,
where P � 0 is chosen such that κ(PA)� κ(A). Of course,
the ideal preconditioner is then trivially P = A−1, for which
κ(PA) = 1; however, constructing this P then amounts to
solving the original linear system, and so provides no com-
putational advantage. Designing an effective preconditioner
P thus amounts to striking a suitable balance between the
improvement in the conditioning of the linear system obtained
(enabling the conjugate gradient iterations to converge rapidly)
and the computational cost of constructing and applying the
preconditioning operator P (so that each conjugate gradient
iteration can be computed rapidly).

In the specific case of (11), the matrix Q̃ from (3b) that
determines the Riemannian Hessian operator (13)–(15) is
obtained as the (generalized) Schur complement of L(W τ)
in the 2× 2 block matrix [39, eq. (18)]:(

L(W τ) Ṽ

Ṽ T L(G̃ρ) + Σ̃

)
(17)

(see [39, Appendix B.1] for this derivation); this suggests that
a preconditioner designed for L(G̃ρ)+Σ̃ will also be effective
at preconditioning Q̃ itself (cf. e.g. Theorem 4.2 of [31]). Since
Σ̃ is a dense (d × d)-block-diagonal modification of L(G̃ρ),
we make the additional simplifying decision to design a pre-
conditioner using L(G̃ρ) alone, both to encourage additional
sparsity and to take advantage of the close connection between
L(G̃ρ) and the structure of the underlying graph G̃ρ.

Based on these considerations, and in light of (13)–(14), we
propose to use a preconditioning operator of the form:

P (Ẏ) =
1

2
ProjY

(
Ẏ M−1

)
(18)

with either M = SymBlockDiagd(L(G̃ρ)) (i.e. block-Jacobi
preconditioning) or M = CCT, where C is an incomplete

Cholesky factorization [30] of L(G̃ρ).8

C. Accelerated optimality verification

The Riemannian optimization method of Section III-B en-
ables us to quickly recover a first-order critical point Y ∗ of
(8); given such a point, our next objective is then to determine
whether Y ∗ is second-order (and hence globally optimal for
(8) and (6) according to Proposition 2).

Using a Lagrangian analysis of (8), one can show that a
critical point Y ∗ is second-order if and only if the matrix:

C(Y ∗) , Q̃− SymBlockDiagd(Q̃Y
∗TY ∗) (19)

is positive semidefinite (cf. Theorems 3.7, 3.8, and 3.9 of [5]);
consequently, our task reduces to computing the minimum
eigenvalue of C(Y ∗). As in the case of Section III-B, the
presence of the (large, dense) matrix Q̃ in (19) renders direct
factorization-based approaches infeasible, so we will again
employ iterative linear-algebraic methods.

The Lanczos algorithm [22, Chp. 9] is an iterative numerical
linear-algebraic procedure for computing specific eigenvalue-
eigenvector pairs (λ, v) of a symmetric linear operator A. In
brief, when initialized with a vector l0, this method constructs
the Krylov subspace K , span{l0, Al0, . . . , Ak−1l0}, com-
putes A′ , πKA|K (the orthogonal projection of the operator
A onto K), and then approximates the target eigenvalue-
eigenvector pair (λ, v) of A using the best available eigenpair
(θ, y) of A′. Unsurprisingly, two of the critical factors influ-
encing the convergence rate of this method are (i) the location
of the target eigenvalue λ within the spectrum of A and (ii) the
proximity of the initial vector l0 to the eigenspace associated
with the target eigenvalue λ [40]. In this section, we show
how to construct a minimum-eigenvalue estimation procedure
for (19) that improves both of these factors.

1) Spectrum shifting: Let λmin denote the minimum eigen-
value of C(Y ∗). We describe a procedure for determining λmin
that requires only computation of dominant (i.e. maximum-
magnitude) eigenvalues; these typically have very favorable
convergence properties.

We begin by computing λdom, the dominant eigenvalue of
C(Y ∗); this can be done reasonably efficiently starting from
a random initial vector and applying a few Lanczos or power
iterations [22, Sec. 8.2]. If λdom < 0, then λmin = λdom and we
are done. Otherwise, λdom ≥ 0, and we consider the operator:

S(Y ∗) , C(Y ∗)− λdomI. (20)

A simple diagonalization argument shows that S(Y ∗) and
C(Y ∗) have the same set of eigenvectors, and that the eigen-
values λi and θi of C(Y ∗) and S(Y ∗) (respectively) are
related by θi = λi − λdom; in particular, since λi − λdom < 0
for all i, it follows that the dominant eigenvalue of S(Y ∗)
is θdom = λmin − λdom. Consequently, we can recover λmin
by computing θdom using the Lanczos procedure applied to
S(Y ∗), and then calculate λmin = θdom + λdom.

8We also experimented with the use of maximum-weight spanning tree [3]
and L-BFGS preconditioners [33], but found that these were not as effective as
either straightforward block-Jacobi or incomplete Cholesky preconditioning.

2) Initialization: In addition to spectral transformation, we
can also exploit the geometry of (8) to determine a favorable
initialization l0 for the Lanczos iterations.

A straightforward computation shows that the Lagrangian
form of the first-order necessary condition for (8) is

C(Y ∗)Y ∗T = 0; (21)

i.e., the rows of Y ∗ are always eigenvectors of C(Y ∗) with
eigenvalue 0. In the (typical) case that the optimization method
of Section III-B converges to a global minimizer, the fact that
C(Y ∗) � 0 and has 0 as an eigenvalue implies that λmin =
0, and therefore the rows of Y ∗ directly provide us a set of
eigenvectors associated with the minimum eigenvalue!

This observation might suggest initializing the Lanczos
procedure with one of the rows of Y ∗, say y1. However,
in the event that C(Y ∗) 6� 0 and we use y1 as an initial
vector, the fact that y1 is already a pure eigenvector means
that the Lanczos procedure will never escape the (invariant)
subspace spanned by y1. A better initialization is to perturb
y1 to ỹ1 by adding a small quantity of random noise; this
enables ỹ1 to remain close to the 0-eigenspace (enabling
very rapid convergence in the event that C(Y ∗) � 0) while
still retaining components from all of C(Y ∗)’s eigenspaces.
We have found that generating ỹ1 by adding a spherically-
uniformly distributed random vector of magnitude .03 · ‖y1‖2
to y1 works very well in practice.

IV. EXPERIMENTAL RESULTS

As a main contribution of this work, we have publicly
released a C++ implementation of the SE-Sync algorithm
that incorporates the computational enhancements detailed
in Section III. Our code employs the Riemannian Trust-
Region (RTR) [1] implementation from ROPTLIB [26] to
solve the rank-restricted Riemannian optimization (8), and the
Lanczos implementation from the Spectra library9 to perform
the minimum-eigenvalue computation of Section III-C. In this
section, we compare this C++ implementation of SE-Sync
against the Gauss-Newton method implemented in GTSAM,10

a highly-optimized, state-of-the-art software library specifi-
cally designed for SLAM applications.

Our experimental test set consists of the six large-scale
SLAM benchmark datasets considered in our previous work
[38, 39]; the first three of these (the sphere, torus, and grid
datasets) are synthetic (although generated using an obser-
vation model different from (1)), while the latter three (the
garage, cubicle, and rim datasets) are large-scale real-world
examples. All of the following experiments are performed
on a Dell Precision 5510 laptop with an Intel Xeon E3-
1505M 2.80 GHz processor and 16 GB of RAM running
Ubuntu 16.04. We initialize each solver using the chordal
initialization, a state-of-the-art method for bootstrapping an
initial solution in SLAM and bundle adjustment problems [32].
Each algorithm is limited to a maximum of 300 iterations, and

9Available at https://github.com/yixuan/spectra
10Version 4.0, available at https://bitbucket.org/gtborg/gtsam

https://github.com/yixuan/spectra
https://bitbucket.org/gtborg/gtsam

GTSAM SE-Sync
Poses # Measurements Objective value 99% red. time [s] Objective value 99% red. time [s] Global opt.? Verification time [s]

sphere 2500 4949 1.687× 103 0.444 1.687× 103 0.149 X 0.245
torus 5000 9048 2.423× 104 0.840 2.423× 104 0.614 X 0.538
grid 8000 22236 8.432× 104 29.79 8.432× 104 1.301 X 1.643

garage 1661 6275 1.263× 100 0.278 1.263× 100 0.250 X 6.456
cubicle 5750 16869 7.171× 102 1.176 7.171× 102 0.700 X 1.722

rim 10195 29743 5.461× 103 4.969 5.461× 103 1.900 X 11.68

TABLE I
RESULTS FOR THE SLAM BENCHMARK DATASETS.

the RTR method is limited to a maximum of 500 Hessian-
vector products per outer iteration. The two algorithms make
use of slightly different convergence criteria: SE-Sync employs
a criterion based upon the norm of the Riemannian gradient,
whereas GTSAM uses a relative decrease condition; in these
experiments, we set these parameters to 10−2 and 10−5,
respectively. To enable a fair comparison of computational
speed despite the methods’ use of different stopping criteria,
we report the elapsed time necessary for them to achieve
99% of the total reduction in function value (both methods
converged to the same solution in all of our examples). In the
case of SE-Sync, we also report the time necessary to perform
the global optimality verification, and consider the minimum
eigenvalue to be numerically nonnegative if λmin > −10−6.
Results for these experiments are summarized in Table I.

Overall, these results indicate that the computational en-
hancements described in Section III enable SE-Sync to solve
pose-graph SLAM problems approximately twice as fast as an
existing state-of-the-art technique, while additionally computa-
tionally certifying the optimality of the solutions so recovered.

V. CONCLUSION

This paper describes the primary design principles and
computational enhancements that we employed in order to
obtain an efficient C++ implementation of SE-Sync, our con-
vex relaxation-based algorithm for certifiably correct SLAM
[38, 39]. Experimental results indicate that this accelerated
implementation is capable of achieving state-of-the-art com-
putational speeds on pose-graph SLAM problems, while ad-
ditionally enabling the direct recovery of certifiably globally
optimal solutions.

REFERENCES

[1] P.-A. Absil, C.G. Baker, and K.A. Gallivan. Trust-region
methods on Riemannian manifolds. Found. Comput.
Math., 7(3):303–330, July 2007.

[2] P.-A. Absil, R. Mahony, and R. Sepulchre. Optimization
Algorithms on Matrix Manifolds. Princeton University
Press, 2008.

[3] M. Bern, J.R. Gilbert, B. Hendrickson, N. Nguyen, and
S. Toledo. Support-graph preconditioners. SIAM J.
Matrix Anal. Appl., 27(4):930–951, 2006.

[4] N. Biggs. Algebraic potential theory on graphs. Bull.
London Math. Soc., 29:641–682, 1997.

[5] N. Boumal. A Riemannian low-rank method for opti-
mization over semidefinite matrices with block-diagonal
constraints. arXiv preprint: arXiv:1506.00575v2, 2015.

[6] N. Boumal, A. Singer, P.-A. Absil, and V.D. Blondel.
Cramér-Rao bounds for synchronization of rotations.
Information and Inference, 3:1–39, 2014.

[7] N. Boumal, V. Voroninski, and A.S. Bandeira.
The non-convex Burer-Monteiro approach works
on smooth semidefinite programs. arXiv preprint
arXiv:1606.04970v1, June 2016.

[8] S. Boyd and L. Vandenberghe. Convex Optimization.
Cambridge University Press, 2004.

[9] S. Burer and R.D.C. Monteiro. A nonlinear programming
algorithm for solving semidefinite programs via low-rank
factorization. Math. Program., 95:329–357, 2003.

[10] S. Burer and R.D.C. Monteiro. Local minima and con-
vergence in low-rank semidefinite programming. Math.
Program., 103:427–444, 2005.

[11] L. Carlone. A convergence analysis for pose graph
optimization via Gauss-Newton methods. In IEEE Intl.
Conf. on Robotics and Automation (ICRA), pages 965–
972, Karlsruhe, Germany, May 2013.

[12] L. Carlone and A. Censi. From angular manifolds to
the integer lattice: Guaranteed orientation estimation with
application to pose graph optimization. IEEE Trans. on
Robotics, 30(2):475–492, April 2014.

[13] L. Carlone, R. Aragues, J. Castellanos, and B. Bona. A
fast and accurate approximation for planar pose graph
optimization. Intl. J. of Robotics Research, 33(7):965–
987, 2014.

[14] L. Carlone, D.M. Rosen, G. Calafiore, J.J. Leonard, and
F. Dellaert. Lagrangian duality in 3D SLAM: Verification
techniques and optimal solutions. In IEEE/RSJ Intl. Conf.
on Intelligent Robots and Systems (IROS), Hamburg,
Germany, September 2015.

[15] L. Carlone, G.C. Calafiore, C. Tommolillo, and F. Del-
laert. Planar pose graph optimization: Duality, optimal
solutions, and verification. IEEE Trans. on Robotics, 32
(3):545–565, June 2016.

[16] A. Chiuso, G. Picci, and S. Soatto. Wide-sense estimation
on the special orthogonal group. Communications in
Information and Systems, 8(3):185–200, 2008.

[17] F. Dellaert and M. Kaess. Square Root SAM: Simultane-
ous localization and mapping via square root information
smoothing. Intl. J. of Robotics Research, 25(12):1181–

1203, December 2006.
[18] F. Dellaert, J. Carlson, V. Ila, K. Ni, and C.E. Thorpe.

Subgraph-preconditioned conjugate gradients for large
scale SLAM. In IEEE/RSJ Intl. Conf. on Intelligent
Robots and Systems (IROS), pages 2566–2571, Taipei,
Taiwan, October 2010.

[19] R.S. Dembo and T. Steihaug. Truncated-Newton algo-
rithms for large-scale unconstrained optimization. Math.
Program., 26:190–212, 1983.

[20] R.S. Dembo, S.C. Eisenstat, and T. Steihaug. Inexact
Newton methods. SIAM J. Numer. Anal., 19(2):400–408,
April 1982.

[21] A. Edelman, T.A. Arias, and S.T. Smith. The geometry
of algorithms with orthogonality constraints. SIAM J.
Matrix Anal. Appl., 20(2):303–353, October 1998.

[22] G.H. Golub and C.F. Van Loan. Matrix Computations.
Johns Hopkins University Press, Baltimore, MD, 3rd
edition, 1996.

[23] G. Grisetti, C. Stachniss, and W. Burgard. Nonlinear
constraint network optimization for efficient map learn-
ing. IEEE Trans. on Intelligent Transportation Systems,
10(3):428–439, September 2009.

[24] G. Grisetti, R. Kümmerle, C. Stachniss, and W. Burgard.
A tutorial on graph-based SLAM. IEEE Intelligent
Transportation Systems Magazine, 2(4):31–43, 2010.

[25] S. Huang, Y. Lai, U. Frese, and G. Dissanayake. How
far is SLAM from a linear least squares problem? In
IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems
(IROS), pages 3011–3016, Taipei, Taiwan, October 2010.

[26] W. Huang, P.-A. Absil, K.A. Gallivan, and P. Hand.
ROPTLIB: An object-oriented C++ library for optimiza-
tion on Riemannian manifolds. Technical Report FSU16-
14, Florida State University, 2016.

[27] M. Kaess, H. Johannsson, R. Roberts, V. Ila, J.J. Leonard,
and F. Dellaert. iSAM2: Incremental smoothing and
mapping using the Bayes tree. Intl. J. of Robotics
Research, 31(2):216–235, February 2012.

[28] K. Khosoussi, S. Huang, and G. Dissanayake. Novel
insights into the impact of graph structure on SLAM. In
IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems
(IROS), pages 2707–2714, Chicago, IL, September 2014.

[29] R. Kümmerle, G. Grisetti, H. Strasdat, K. Konolige,
and W. Burgard. g2o: A general framework for graph
optimization. In IEEE Intl. Conf. on Robotics and
Automation (ICRA), pages 3607–3613, Shanghai, China,
May 2011.

[30] C.-J. Lin and J.J. Moré. Incomplete Cholesky factoriza-
tions with limited memory. SIAM J. Sci. Comput., 21(1):
24–45, 1999.

[31] J. Mandel. On block diagonal and Schur complement
preconditioning. Numerische Mathematik, 58(1):79–93,
December 1990.

[32] D. Martinec and T. Pajdla. Robust rotation and trans-
lation estimation in multiview reconstruction. In IEEE
Intl. Conf. on Computer Vision and Pattern Recognition
(CVPR), pages 1–8, Minneapolis, MN, June 2007.

[33] J.L. Morales and J. Nocedal. Automatic preconditioning
by limited memory quasi-Newton updating. SIAM J.
Optim., 10(4):1079–1096, 2000.

[34] J. Nocedal and S.J. Wright. Numerical Optimization.
Springer Science+Business Media, New York, 2nd edi-
tion, 2006.

[35] E. Olson, J.J. Leonard, and S. Teller. Fast iterative
alignment of pose graphs with poor initial estimates. In
IEEE Intl. Conf. on Robotics and Automation (ICRA),
pages 2262–2269, Orlando, FL, May 2006.

[36] D.M. Rosen, M. Kaess, and J.J. Leonard. RISE: An
incremental trust-region method for robust online sparse
least-squares estimation. IEEE Trans. on Robotics, 30
(5):1091–1108, October 2014.

[37] D.M. Rosen, C. DuHadway, and J.J. Leonard. A convex
relaxation for approximate global optimization in simul-
taneous localization and mapping. In IEEE Intl. Conf.
on Robotics and Automation (ICRA), pages 5822–5829,
Seattle, WA, May 2015.

[38] D.M. Rosen, L. Carlone, A.S. Bandeira, and J.J. Leonard.
A certifiably correct algorithm for synchronization over
the special Euclidean group. In Intl. Workshop on
the Algorithmic Foundations of Robotics (WAFR), San
Francisco, CA, December 2016.

[39] D.M. Rosen, L. Carlone, A.S. Bandeira, and J.J. Leonard.
SE-Sync: A certifiably correct algorithm for synchroniza-
tion over the special Euclidean group. Technical Re-
port MIT-CSAIL-TR-2017-002, Computer Science and
Artificial Intelligence Laboratory, Massachusetts Institute
of Technology, Cambridge, MA 02139, USA, February
2017.

[40] Y. Saad. On the rates of convergence of the Lanczos and
the block-Lanczos methods. SIAM J. Numer. Anal., 17
(5):687–706, October 1980.

[41] A. Singer and H.-T. Wu. Vector diffusion maps and
the connection Laplacian. Comm. Pure Appl. Math., 65:
1067–1144, 2012.

[42] C. Stachniss, J.J. Leonard, and S. Thrun. Simultaneous
localization and mapping. In Springer Handbook of
Robotics, pages 1153–1176. Springer International Pub-
lishing, 2016.

[43] T. Steihaug. The conjugate gradient method and trust
regions in large scale optimization. SIAM J. Numer.
Anal., 20(3):626–637, June 1983.

[44] S. Thrun, W. Burgard, and D. Fox. Probabilistic
Robotics. The MIT Press, Cambridge, MA, 2008.

[45] M.J. Todd. Semidefinite optimization. Acta Numerica,
10:515–560, 2001.

[46] R. Tron, B. Afsari, and R. Vidal. Intrinsic consensus on
SO(3) with almost-global convergence. In IEEE Conf.
on Decision and Control, pages 2052–2058, Maui, HI,
December 2012.

[47] H. Wang, G. Hu, S. Huang, and G. Dissanayake. On
the structure of nonlinearities in pose graph SLAM. In
Robotics: Science and Systems (RSS), Sydney, Australia,
July 2012.

	I Introduction
	II A review of certifiably correct SLAM
	II-A Pose-graph SLAM
	II-B A convex relaxation for SLAM

	III Computational enhancements for certifiably correct SLAM
	III-A Exploiting problem structure
	III-A1 Exploiting low-rank structure
	III-A2 Exploiting geometric structure
	III-A3 Exploiting graph-theoretic structure
	III-A4 Ensuring optimality

	III-B Designing a fast Riemannian optimization method
	III-B1 A closed form for the Riemannian gradient and Hessian
	III-B2 Solving the trust-region subproblem
	III-B3 Preconditioning the conjugate gradient method

	III-C Accelerated optimality verification
	III-C1 Spectrum shifting
	III-C2 Initialization

	IV Experimental results
	V Conclusion

