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The Parametric Wahba Problem

Problem 65-1, A Least Squares Estimate of Satellite Attitude, by GRACE WAHBA
(International Business Machines Corporation).

Given two sets of n points {vi, Vo, ---, Va},and {v,", vo", -+, v}, where . TA
n = 2, find the rotation matrix M (i.e., the orthogonal matrix with determinant Hel}éjgl q q
+1) which brings the first set into the best least squares coincidence with the v q

second. That is, find M which minimizes
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Mapping A to SO(3) via a Differentiable Layer

minimum-eigenspace
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implicit function theorem

Jan Magnus, 'On Differentiating Eigenvalues and Eigenvectors. .."
Econometric Theory (1985)

Very simple in PyTorch!
_, evs = torch.symeig(A, eigenvectors=True)
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Continuity of SO(3) Representations
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Theorem 1 (Smooth Global Section, SO(3) — S5). Consider

Our representation the surjective map f : S5 — SO(3) such that f(A) returns the

admits a smooth g rotation matrix defined by the two antipodal unit quaternions

(continuous and +q* that minimize Problem 3. There exists a smooth and

: : lobal mapping, or section, g : SO(3) — S} such that
differentiable) & A

f(g(R)) = R.




Continuity of SO(3) Representations
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The Bingham Density and A ()

4x4 symmetric A defines a Bingham belief

anti-podally symmetric

1
N(A)

‘p(x; D, A) = exp (XTDADTX)



Out-of-Distribution Detection
Robust Relative Rotation from Images

corrupted test set
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DT rejects OOD inputs
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Out-of-Distribution Detection
Robust Relative Rotation from Images
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github.com/utiasSTARS/
bingham-rotation-learning

v
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Smooth
useful for large rotation targets

Encodes Bingham belief

Easy to implement
a few lines in PyTorch

g min q'A(8)q
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Can slow down training
differentiable layer requires an
eigendecomposition and linear solve

OOD mechanism
further investigation required

UNIVERSITY OF

I H Bl Massachusetts
I I Institute of
Technology



