A Smooth Representation of Belief over SO(3)for Deep Rotation Learning with Uncertainty

Robotics: Science and Systems 2020

Valentin Peretroukhin, Matthew Giamou, David M. Rosen, W. Nicholas Greene, Nicholas Roy, and Jonathan Kelly

2 3 1 A Smooth Representation of Belief over SO(3) for Deep Rotation Learning with Uncertainty

3D Rotation Group, SO(3)

Rotation matrices

$$\begin{bmatrix} | & & | \\ b_1 & \cdots & b_n \\ | & & | \end{bmatrix}$$
$$b_3 = b_1 \times b_2$$
$$6D \ continuous$$
representation

$\{\alpha, \beta, \gamma\}$ Euler angles

Unit quaternions

The Parametric Wahba Problem

(International Business Machines Corporation).

second. That is, find M which minimizes

$$\sum_{j=1}^n \| \mathbf{v}_j^* - M \mathbf{v}_j \|^2.$$

Mapping A to SO(3) via a Differentiable Layer

Very simple in **PyTorch**! _, evs = torch.symeig(A, eigenvectors=True)

minimum-eigenspace

A Smooth Representation of Belief over SO(3) for Deep Rotation Learning with Uncertainty

Continuity of SO(3) Representations

Zhou et al. 'On the Continuity of Rotation Representations...' CVPR (2019)

> Our representation admits a **smooth** g (continuous and differentiable)

Theorem 1 (Smooth Global Section, $SO(3) \to \mathbb{S}^4_{\lambda}$). Consider the surjective map $f : \mathbb{S}^4_{\lambda} \to SO(3)$ such that $f(\mathbf{A})$ returns the rotation matrix defined by the two antipodal unit quaternions $\pm \mathbf{q}^*$ that minimize Problem 3. There exists a smooth and global mapping, or section, $g : SO(3) \to \mathbb{S}^4_{\lambda}$ such that $f(g(\mathbf{R})) = \mathbf{R}$.

mean error (deg)

oursmooth representation

 100°

2 3 1 A Smooth Representation of Belief over SO(3) for Deep Rotation Learning with Uncertainty

The Bingham Density and $\mathbf{A}(\boldsymbol{\theta})$

4x4 symmetric \mathbf{A} defines a Bingham *belief* $\mathbf{A}(\boldsymbol{\theta}) \iff \mathbf{D}\mathbf{A}\mathbf{D}^{\mathsf{T}}$

Out-of-Distribution Detection Robust Relative Rotation from Images

Dispersion Coefficient

$$\operatorname{tr}(\mathbf{\Lambda}) = 3\lambda_1 - \lambda_2 - \lambda_3 - \lambda_4, \ \lambda_i \in \lambda(\mathbf{A})$$

based on eigenvalues of learned A

DT rejects OOD inputs

corrupted test sequence

Out-of-Distribution Detection Robust Relative Rotation from Images

 $\min_{\mathbf{q}\in\mathbb{R}^4} \quad \mathbf{q}^\mathsf{T}\mathbf{A}(\boldsymbol{\theta})\mathbf{q}$

subj. to $\mathbf{q}^{\mathsf{T}}\mathbf{q} = 1$

MAV with global shutter camera

A Smooth Representation of Belief over SO(3)for Deep Rotation Learning with Uncertainty

github.com/utiasSTARS/ bingham-rotation-learning

Encodes Bingham belief

Valentin Peretroukhin, Matthew Giamou, David M. Rosen, W. Nicholas Greene, Nicholas Roy, and Jonathan Kelly

Can slow down training

differentiable layer requires an eigendecomposition and linear solve

OOD mechanism

further investigation required

