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Introduction
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Motivation

Robotics: The science of physically embodied autonomous agents.

Core capabilities:
e Planning
@ Navigation

@ Manipulation ...
= These require understanding the world’s geometry.
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Example: Autonomous vehicles

Video credit: Google
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Two fundamental problems in robotic spatial perception

Localization (“Where am 1?") Mapping ( “What's around me?")
Given: Environmental model Given: Robot pose
Estimate: Robot pose Estimate: Environmental model

Hornung et al. 2013

Fox et al. 1999

= Given either pose or map, we can find the other via recursive
Bayesian estimation.
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Simultaneous localization and mapping (SLAM)

Given neither robot pose nor map, jointly estimate both.

SLAM

@ Much harder than localization or mapping alone.
@ Enables operation in unknown environments.

@ An essential enabling technology for mobile robots.
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Simultaneous localization and mapping (SLAM)

H. Johannsson et al. “Temporally Scalable Visual SLAM Using a Reduced Pose Graph”. In: IEEE Intl. Conf. on

Robotics and Automation (ICRA). Karlsruhe, Germany, May 2013, pp. 54-61 5/33
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In this talk

@ Lightning introduction to pose-graph SLAM
o Problem formulation

e The problem of nonconvexity

@ Our contributions: Certifiably correct SLAM
e A convex relaxation for pose-graph SLAM

e A fast optimization method to solve this relaxation efficiently

Payoff: SE-Sync, a certifiably correct algorithm for SLAM
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A concrete example

Consider a robot exploring some initially unknown environment...
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The network of spatial relations

More abstractly, as the robot explores...

-

X1

...we construct a graph of noisy observations of spatial relations.
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The network of spatial relations
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Formalizing the problem: Pose graphs

A pose-graph is a directed graph G = (X,é_”) that models the joint
distribution p(Y|X) of this network of noisy relative measurements:

4/* ---------- K56 S5 <
/ P10 = 1 pilsbe.x)
qs'a” o —
(iJ)e€
X1 K12 t %3 X3
Here:
@ X ={xi,...,x,} are the (latent) robot poses

e )V = {X;} are the measurements of relative transforms xfl)g

o Xjj ~ pjj(+|xi, ;) is the measurement model for X;;.
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The pose-graph SLAM problem

-,

Given: A pose-graph model G = (X, &)

Xo6 q Xa5 Xi -
g . /s pVX)= 1] pixylxi, x)
i (ij)e€

x1 K12

X2 K23 3

Find: A maximum-likelihood estimate XuLg € SE(d)" for X.
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The pose-graph SLAM problem

Many important examples in
geometric estimation:

@ Robotic mapping
@ Camera motion estimation

@ Sensor network localization

Special cases:
@ Rotation averaging

o Community detection

10/33



Pose-graph SLAM

[eJele] lele]

The pose-graph SLAM problem

-,

Given: A pose-graph model G = (X, &)

Xo6 q Xa5 Xi -
g . /s pVX)= 1] pixylxi, x)
i (ij)e€

x1 K12

X2 K23 3

Find: A maximum-likelihood estimate XuLg € SE(d)" for X:

XumLe € argmin E — log pij(Xij|xi, x}).
XeSE(d)" S
(ij)e€

10/33



Pose-graph SLAM
©000®00

The pose-graph SLAM problem

-,

Given: A pose-graph model G = (X, &)

i Xs6 g Xa5 Xi -
g . /s pVX)= 1] pixylxi, x)
) (ij)eé

x1 K12 > K23

X

Find: A maximum-likelihood estimate XuLg € SE(d)" for X:

XumLe € argmin E — log pij(Xij|xi, x}).
XeSE(d)" 5 -
(ij)e€

The challenge: This is a high-dimensional, nonconvex problem
= LOTS of (bad) local minima
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Optimal estimate Suboptimal critical point
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The problem of nonconvexity

Main question: Can we ensure good SLAM performance?

Suboptimal critical point Suboptimal critical point
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In the rest of this talk ...

We develop:

o A convex relaxation of pose-graph SLAM whose minimizer
provides an exact MLE for moderate noise

@ A fast optimization method to solve this relaxation efficiently

1D.M. Rosen, L. Carlone, et al. “SE-Sync: A Certifiably Correct Algorithm for Synchronization over the Special
Euclidean Group”. In: Intl. J. of Robotics Research 38.2-3 (Mar. 2019), pp. 95-125
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The Main ldea
We can't efficiently solve (NP-hard) pose-graph SLAM in general

2Bandeira 2016; Chandrasekaran, Recht, et al. 2012; Chandrasekaran and Jordan 2013.
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The Main ldea
We can't efficiently solve (NP-hard) pose-graph SLAM in general

But: Maybe we can well-approximate “reasonablée’ instances?
Intuition: Nature is not “out to get you"

Hard cases

Real-world cases (?)

All pose-graph SLAM instances

Question: How to generate these approximations?

One general approach: Convex relaxation
@ Standard machinery for constructing these

e Admit (some) formal guarantees on solution quality.?

2Bandeira 2016; Chandrasekaran, Recht, et al. 2012; Chandrasekaran and Jordan 2013.
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The “standard model” of pose—graph SLAM
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The “standard model” of pose-graph SLAM

X4

<X’( 777777777 1 K56 1 X5 -~ ~
. g A pV1X) =TI ps(sylxi,x)
) i ) (iJ)e€
X1 X2 X3

b

X 23

Assume the following measurement model for %; = (%, R;):

B = R (t; — t;) + oty St ~ N(0,XF)
Rj = R R; - exp(3Ry), dR;j ~ N(0,X)
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X4

<X’( 777777777 1 K56 1 X5 -~ ~
. g A pV1X) =TI ps(sylxi,x)
) i ) (iJ)e€
X1 X2 X3

b

X 23

Assume the following measurement model for %; = (%, R;):

E,'_,' = R,-T(tj— ti)+5tU, 5tUNN(0,ZE~)
Rj = RTR; - exp(0Ry), 3Ry ~ N(0,%%)

= MLE is a sparse nonlinear least-squares problem:

B — R (t — 1)

o ~ N\ ]2
XMLE = argmin g Hlog (RJ-TR;R;J-) H +
t;€Rd g 25
Ri€50(d) (W)EE
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T
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The “standard model” of pose-graph SLAM
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The “standard model” of pose-graph SLAM

Xi X¢ Xe X4 ) )
/ p(V1X)= [ pi%lxix)

6
K56 a5

& -

(ij)e€

X1 X12

5
X 23 3

Assume the following measurement model for %; = (%, R;):

B = R (tj — t;) + 0ty ot ~ N(0,X7)
Rj = RTR; - exp(0Ry), 3Ry ~ N(0,%%)

= MLE is a sparse nonlinear least-squares problem:
2

= T

E— RT (65— 1)

A ~ 2
Sie = argmin 3 |log (RJTR,-R,-J-)H +
t;eRd N 25
Ries0(d) ()€€

But: How to handle nonconvexity?
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Step 1: Reformulating pose-graph SLAM

Standard model assumes exponentiated Gaussian rotational noise:

Ry = RTR; - exp(5Ry),
SRy ~ N(0,%7)
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Step 1: Reformulating pose-graph SLAM

Standard model assumes exponentiated Gaussian rotational noise:

Rj = R R; - exp(5Ry),
SRy ~ N'(0,%%)

Main insight: This is not a “canonical” choice

= Perhaps there is a more convenient formulation ...
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Step 1: Reformulating pose-graph SLAM

Our proposal: Use an exponential family distribution on SO(d).
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Step 1: Reformulating pose-graph SLAM

Our proposal: Use an exponential family distribution on SO(d).
Isotropic Langevin distribution:

p(R; M, k) =

Cd%/{) exp (mr(MTR)) , R eSO(d)

w.r.t. Haar measure on SO(d).

Generative model (3D): 150 — 0

1.254 —_— k=2

e Sample axis  ~ U(S?) 100 i
. 0.751
@ Sample angle 6§ ~ vonMises(0, 2k) 0501
0.25

0.00 q J \
n _ 0 n
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Step 1: Reformulating pose-graph SLAM

Our proposal: Use an exponential family distribution on SO(d).
Isotropic Langevin distribution:

p(R; M, k) =

Cd%/{) exp (mr(MTR)) ., ReS0(d)

w.r.t. Haar measure on SO(d).

Generative model (3D): 1501 0
e Sample axis  ~ U(S?) 200 — EZ;’
@ Sample angle 6 ~ vonMises(0, 2x) o
@ Return R = exp(0[V]«) o X
Payoffs: o

e vonMises(0,2x) — N(0,1/2k) as k — 0.
= Isotropic Langevin “looks like" exp. Gaussian for low noise
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Step 1: Reformulating pose-graph SLAM

Our proposal: Use an exponential family distribution on SO(d).
Isotropic Langevin distribution:

p(R; M, k) =

Cd%/{) exp (mr(MTR)) ., ReS0(d)

w.r.t. Haar measure on SO(d).

Generative model (3D): 1501 0
e Sample axis  ~ U(S?) 200 — EZ;’
@ Sample angle 6 ~ vonMises(0, 2x) o
@ Return R = exp(0[V]«) o X
Payoffs: o

e vonMises(0,2x) — N(0,1/2k) as k — 0.
= Isotropic Langevin “looks like" exp. Gaussian for low noise
@ Exponential family = MLE has simple algebraic form
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Step 1: Reformulating pose-graph SLAM
Standard model:

By = R (t; — ) + oty ot ~ N(0,XF)
Rj = RTR; - exp(JRy), 3Ry ~ N(0,%%)
N _ -\ 2 . 2
XMLE = argmin Z Hlog (RJ-TR,'RU) H S|t — RT(t —t)||_ .
t;eRd = P }:5

P ij
R.es0(d) (W)EE
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Step 1: Reformulating pose-graph SLAM
Standard model:

B = R (t; — t;) + oty Sty ~ N(0,X7)
" . o 2 - 2
Soe = argmin 3 [los (R )|, s 706 ]
t;ERd .. (‘j z,‘j }Z,.j
R,e50(d) ()€
Our proposal:
B = R (t; — t;) + oty St ~ N0, 75 1)
'L_?ij = RiTRj - ORjj, dR;j ~ Langevin(ly, kjj)
& . ~ |2 - 2
Sine = wamin 3 8- R+ 55 - &7 - 0
t;eRd - F ZU

R.€50(d) (14)€E
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Step 1: Reformulating pose-graph SLAM
Standard model:

B = R (t; — t;) + oty St ~ N(0,XF)

INQ-J- = R R; - exp(dRy), dR; ~ N0, ZZ)
XuLe = argmin Z Hlog (R R; RU> H + i — RT( —tj) ; .

Régﬂéd( ) ()ee '
Our proposal'

=R (t — t;) + oty Stij ~ N(0, 75 a)

,L_?-- =R"R;- R, dR;j ~ Langevin(ly, /@,-j)
XMLE = argmin Z HR R; R,J ’ + t,J — R —t

t;eRd
Ries0(d) ()€€
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Step 1: Reformulating pose-graph SLAM
Standard model:

By = R (t; — ) + oty ot ~ N(0,XF)
Rj = RTR; - exp(JRy), 3Ry ~ N(0,%%)
N _ RNTY B 2
XMLE = argmin Z Hlog (RJTR,RU) H p—}— tij — R,-T(tj — t,') .
t;ERd = Z’J 2’7]—

R.es0(d) (W)EE

Our proposal:

B = R (t; — t;) + oty St ~ N0, 75 1)
'L_?ij = RiTRj - ORjj, dR;j ~ Langevin(ly, kjj)
e = . HR'_R"RI“ ti— R (tj—ti ’
MLE = argmin Zq ] il|+ ||t - R (4 — t) }

t;€Rd .
Ries0(d) ()€€

Payoff: Our formulation has a convex quadratic objective.
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Step 2: Simplifying the maximum-likelihood estimation

2 52
’F + Tij Htj -t — R,'tU||2

‘%—%%

% .
PvmLe =  min Z Kij
L‘,'GRd . -
R;€SO(d) (iy)e€
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Solving for t £ (t1,...,t,) in terms of R £ (Ry,..., R,) using a
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[Lots of algebra...]
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Solving for t £ (t1,...,t,) in terms of R £ (Ry,..., R,) using a
generalized Schur complement:

Simplified ML estimation

wie= _min tr(QR'R
PmLE Regné?d)n r(Q )

Q=L(6")+ TTanQ: T

Payoffs:

@ Simplified MLE is over
(compact) rotations only
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Step 2: Simplifying the maximum-likelihood estimation

2
- . D
Rj — R,'R,‘j ’F + Tij Htj -t — R,'tU||2

% .
PvmLe =  min Z Kij
L‘,'GRd . -
R;€SO(d) (iy)e€

Solving for t £ (t1,...,t,) in terms of R £ (Ry,..., R,) using a
generalized Schur complement:

Simplified ML estimation

Payoffs:
@ Simplified MLE is over
(compact) rotations only

o Data matrices L(G?), T, Q, N
have simple interpretations in G
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Simplified ML estimation

wie= _min tr(QR'R
PmLE Regncl)r(]d)” r(Q )
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Step 3: Forming the semidefinite relaxation

Simplified ML estimation
pie = _min _ tr(QRTR)

ReSO(d)"
Iy * *
* Ay *
RTR= . , | =o.
* ke |y

RTR e {Z € 5% | BlockDiagy(Z) = (Iy. . .. I)

—
lI>
Q
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Step 3: Forming the semidefinite relaxation

Simplified ML estimation
pie = _min _ tr(QRTR)

ReSO(d)"
Iy = *
* *
RTr=|_ ¢ " |=o
x % ey

RTR € {Z eS| BlockDiagy(Z) = Iy, la) } 2 C

But C is a spectrahedron, and therefore convex
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Step 3: Forming the semidefinite relaxation

Simplified ML estimation Semidefinite relaxation

pipp = min tr(Q2)
Zesdn

s.t. BlockDiagy(Z) = (I4,-- -, l4)

ly % *

* *
RTR=|_ ¢ " |=o

x % ey

RTR € {Z €S| BlockDiagy(Z) = (ly, .. 1) } 2 C
But C is a spectrahedron, and therefore convex

= Expanding MLE's feasible set to C gives a convex relaxation
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The Main Idea
Simplified ML estimation Semidefinite relaxation
o ' ORT piop = min tr(QZ
PMLE Rersncl)?d)ntr(QR R) SDP Zesih (QZ)

s.t. BlockDiagy(Z) = (Ig,- -, l4)

Payoffs:
® pipp < prLe (suboptimality lower bound)
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Proposition (Rosen, Carlone, et al. 2016)

Let Q be the matrix constructed using the true relative transforms
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Proposition (Rosen, Carlone, et al. 2016)

Let Q be the matrix constructed using the true relative transforms

xji. There is a constant 8 = 3(Q) > 0 s.t., if||Q@ — Q|2 < B, then:
(i) The semidefinite relaxation has a unique solution Z*, and

(i) Z* = R*TR*, where R* € SO(d)" is a minimizer of MLE.

= We can recover an exact MLE by (numerically) solving SDP!
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CPU time V1 [s]
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s.t. BlockDiagy(Z) = (lg, .-, 1q)

33 43 n 53 63
General SDP of order n:

= Matrices have dimension O(n?)
= Newton system has dimension O(n*)3
= Solving Newton system (via factorization) has O(n®) cost

But: Maybe we can build a specialized solver for PGO?

5L Vandenberghe and S. Boyd. “Semidefinite Programming”. In: SIAM Review 38.1 (Mar. 1996), pp. 49-95.
19/33



Exploiting low-rank structure

We expect a low-rank solution Z* = Y*TY* for:

pipp = min tr(QZ) s.t. Diagy(Z) = (lg, .., lq).
Zesdn

4Burer and Monteiro 2003; Burer and Monteiro 2005; Burer and Choi 2006.
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Payoffs:

o YTY =0 for all Y = PSD constraint is redundant
= Rank-restricted factorization is an NLP (vs. SDP)

@ Y is much lower-dimensional than Z for r < dn

o r > rank(Z*) for some optimal Z* = (Y*)TY* solves SDP.

4Burer and Monteiro 2003; Burer and Monteiro 2005; Burer and Choi 2006.
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Exploiting geometric structure®

Rank-restricted SDP, NLP form
PSDPLR = , i tr(QYTY)

ER'Xd"

s.t. BlockDiagy (YY) = (lg,...,1q)

5N. Boumal. “A Riemannian Low-Rank Method for Optimization Over Semidefinite Matrices with
Block-Diagonal Constraints”. arXiv preprint: arXiv:1506.00575v2. 2015
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z = min tr QYTY 2 = min tr(QY'Y
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s.t. BlockDiagy (YY) = (lg,...,1q)

The constraints are equivalent to:
YTY: =1, YieR™9,
Notice: This is the definition of the Stiefel manifold:
St(k,n) 2 {Y e R™K | YTy = /k} :

Payoff: This is an unconstrained optimization problem.
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Ensuring global optimality

Simplified pose-graph MLE

¥ e= min tr(QR'R
PMLE = ¢ S0(d)" (D

Semidefinite relaxation
pspp = min tr(QZ)
Zesdn

s.t. BlockDiagy(Z) = (Ig,-- -, l4)
4

Riemannian rank-restricted NLP

SopLR = _ min  tr(QYTY
PsppLR Yegr:(lg,r)” r(Q@ )
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pipp = min tr(Q2)
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s.t. BlockDiagy(Z) = (Ig,-- -, l4)

\ e Z* = Y'Y is a solution of

Riemannian rank-restricted NLP the semidefinite relaxation.
2 = min tr(QY'Y
PsppLR YeSt(d,r)n (Q )

= We can use (fast) local search to find globally optimal solutions!
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The Riemannian Staircase

Riemannian rank-restricted NLP

pépp = min tr(QZ) péppLr =, min  tr(QYTY)
VASSIH

Semidefinite relaxation

Y eSt(d,r)”

s.t. BlockDiag,(Z) = (Ig,-- -, l4)

Input: Initial point Y € St(d, r)", ro > d.
Output: Symmetric factor Y* of SDP solution Z* = Y*TY*.

1. forr=ry,...,dn+1 do
2 Y* < SECONDORDERLOCALSEARCH(Y) (Riemannian NLP).
3 if rank(Y*) < r then
4 return Y*
5: else .
6 Set Y «+ ( Y )
O1xdn
7 end if
8: end for

23/33



The Riemannian Staircase

Riemannian rank-restricted NLP

pépp = min tr(QZ) péppLr =, min  tr(QYTY)
VASSIH

Semidefinite relaxation

Y eSt(d,r)”

s.t. BlockDiag,(Z) = (Ig,-- -, l4)

Input: Initial point Y € St(d, r)", ro > d.
Output: Symmetric factor Y* of SDP solution Z* = Y*TY*.

1. forr=ry,...,dn+1 do
2 Y* < SECONDORDERLOCALSEARCH(Y) (Riemannian NLP).
3 if rank(Y*) < r then
4 return Y*
5: else .
6 Set Y + ( Y )
O1xdn
7 end if
8: end for

23/33



Simplified pose-graph MLE

ie= _min tr(QRTR
PmLE Reg‘(;’(‘d)n r(Q )

|<:

SDP relaxation

pipp = min tr(QZ2)
Zesdn

s.t. Diagy(Z2) = (lg,. .., 1q)
4

Riemannian rank-restricted NLP

tr(QYTY)

4

k _ o
PsppLr =, _MIN

YeSt(d,r)n

o’

The SE-Sync algorithm:

@ Find low-rank factor Y* using
fast (2nd-order) NLP method
in Riemannian Staircase.
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Simplified pose-graph MLE The SE-Sync algorithm:

pie = min _ tr(QRTR) © Find low-rank factor Y* using
ReSO(d)" fast (2nd-order) NLP method
I in Riemannian Staircase.
SDP relaxation . @ Compute SDP lower bound:
PSpp = ngisr%ntr(QZ ) pipp = tr(QY*TY*).
st. Diagy(Z) = (..., ! © Round Y* — R € SO(d)"
84(2) = (la a) / using truncated SVD.
4
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Simplified pose-graph MLE

min
ReSO(d)"

N3
SDP relaxation

pipp = min tr(QZ2)
Zesdn

s.t. Diagy(Z2) = (14, -
(3
Riemannian rank-restricted NLP

tr(QYTY)

PMLE = tr(QRTR)

'7ld)

4

min

Ps =
SRS YeSt(d,r)”

o’

The SE-Sync algorithm:

@ Find low-rank factor Y* using
fast (2nd-order) NLP method
in Riemannian Staircase.

@ Compute SPP lower bound:
Pépp = tr(QY*TY").

@ Round Y* — R € SO(d)"
using truncated SVD.

@ Return {R, Ppp}-

Payoff: If exactness holds:
o Ris globally optimal
° tr((NQIA?TIA?) = ppp certifies it
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Experimental results |: Grid world simulations

Question: How do noise and problem size affect performance?
Test: Simulate random grid-world, varying s, 7, and n:

e
QQQ"&/Q
/Q”‘" S <
‘;“‘:‘ // >
““ =
<

B =R (t; — t;) + 61y, St ~ N(0,771y)
’N?ij = RiTRj - ORj, dR;j ~ Langevin(ly, )

Baseline: Gauss-Newton using chordal initialization
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Experimental results |l: Large-scale SLAM benchmarks

PDL-GN (GTSAM) SE-Sync
# Poses Objective value Time [s] Objective value Time [s] Rel. suboptimality
csail 1045 3.170 x 10% 0.029 3.170 x 10% 0.010 7.844 x 10716
intel 1728 5.235 x 10! 0.120 5.235 x 10* 0.071 1.357 x 1016
ais2klinik 15115 1.885 x 102 12.472 1.885 x 102 1.981 2.412 x 10715
garage 1661 1.263 x 10° 0.415 1.263 x 10° 0.468 1.618 x 10~
cubicle 5750 7.171 x 10° 2.456 7.171 x 102 0.754 2.061 x 107 1%
rim 10195 5.461 x 103 6.803 5.461 x 103 2.256 5.663 x 10715
csail ais2klinik rim
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Summary & future directions
©0000

Contributions

SE-Sync: A certifiably correct algorithm for pose-graph SLAM®

@ Recovers globally optimal estimates for moderate noise
(up to 10x typical levels)

@ Significantly faster than prior state-of-the-art techniques

SD.M. Rosen, L. Carlone, et al. “SE-Sync: A Certifiably Correct Algorithm for Synchronization over the Special
Euclidean Group”. In: Intl. J. of Robotics Research 38.2-3 (Mar. 2019), pp. 95-125

7D.M. Rosen. “Towards Provably Robust Machine Perception”. Presented at Robotics: Science and Systems
(RSS) in the workshop “RSS Pioneers”. June 2019
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7D.M. Rosen. “Towards Provably Robust Machine Perception”. Presented at Robotics: Science and Systems
(RSS) in the workshop “RSS Pioneers”. June 2019
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Summary & future directions
00®00

Distributed pose-graph SLAM

DC2-PGO: First distributed certifiably correct algorithm for
pose-graph SLAM and rotation averaging.®

I'I y

8Y. Tian et al. “Distributed Certifiably Correct Pose-Graph Optimization”. In: /EEE Trans. on Robotics (2020).
(under review).
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Summary & future directions
00®00

Distributed pose-graph SLAM

Distributed Certifiably Correct
Pose-Graph Optimization

Yulun Tian, Kasra Khosoussi, David M. Rosen, Jonathan P. How

8Y. Tian et al. “Distributed Certifiably Correct Pose-Graph Optimization”. In: |EEE Trans. on Robotics (2020).
(under review).
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Summary & future directions
000e0

Application: Distributed metric-semantic SLAM!

Kimera-Multi: a System for Distributed Multi-Robot
Metric-Semantic Simultaneous Localization and Mapping

Yun Chang, Yulun Tian, Jonathan P. How, Luca Carlone

Massachusetts Institute of Technology

4
Illil- :’f:SP \RK ACL LLIps

1y, Chang et al. “Kimera-Multi: a System for Distributed Multi-Robot Metric-Semantic Simultaneous
Localization and Mapping”. In: arXiv preprint arXiv:2011.04087 (2020)
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Summary & future directions
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Contributions

SE-Sync: A certifiably correct algorithm for pose-graph SLAM®

@ Recovers globally optimal estimates for moderate noise
(up to 10x typical levels)

@ Significantly faster than prior state-of-the-art techniques

= First practical alg. provably able to recover correct solutions

9D.M. Rosen, L. Carlone, et al. “SE-Sync: A Certifiably Correct Algorithm for Synchronization over the Special
Euclidean Group”. In: Intl. J. of Robotics Research 38.2-3 (Mar. 2019), pp. 95-125

10D M. Rosen. “Towards Provably Robust Machine Perception”. Presented at Robotics: Science and Systems
(RSS) in the workshop “RSS Pioneers”. June 2019
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Future directions: General certifiable estimation1®

@ General and robust extensions via moment relaxation

@ Scalable semidefinite optimizers

9D.M. Rosen, L. Carlone, et al. “SE-Sync: A Certifiably Correct Algorithm for Synchronization over the Special
Euclidean Group”. In: Intl. J. of Robotics Research 38.2-3 (Mar. 2019), pp. 95-125

10D M. Rosen. “Towards Provably Robust Machine Perception”. Presented at Robotics: Science and Systems
(RSS) in the workshop “RSS Pioneers”. June 2019

33/33


https://github.com/david-m-rosen/SE-Sync

	Introduction
	Pose-graph SLAM
	Convex relaxation of SLAM
	

	SE-Sync
	

	Experimental results
	Summary & future directions

