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Feature-based mapping in semi-static environments

Feature-based mapping:

o ldea: Model the world as a set of features

o Goal: Identify the features, and estimate states
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Feature-based mapping in semi-static environments

Feature-based mapping:

o ldea: Model the world as a set of features

o Goal: Identify the features, and estimate states

Changing environments:
Environmental change <= Feature (dis)appearance

Goal: Track the temporal persistence of each feature

Technical challenges:
@ Sensor noise

@ Temporal evolution of the environment

= Feature detections alone are not enough!

Our approach: Model feature persistence beliefs
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Main idea: the feature persistence model

We propose the following feature persistence model to reason
about temporal change in semi-static environments:

Feature persistence model
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Key properties:
@ Feature abstraction: works with any map representation
e Fully Bayesian: explicitly models uncertainty
@ Accepts any p7(-): supports a rich modeling framework

@ Speed: admits constant-time online inference
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Our contributions

@ The feature persistence model, a novel feature-abstracted
model of environmental change over time;
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@ The feature persistence model, a novel feature-abstracted
model of environmental change over time;

@ The persistence filter, an exact, constant-time online inference
method for computing persistence beliefs; and

© Methods for designing custom priors to encode a priori
knowledge of environmental dynamics.

Persistence filter output
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