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Feature-based mapping in semi-static environments

Feature-based mapping:

Idea: Model the world as a set of features

Goal: Identify the features, and estimate states

Changing environments:

Environmental change ⇐⇒ Feature (dis)appearance

Goal: Track the temporal persistence of each feature

Technical challenges:

Sensor noise

Temporal evolution of the environment

⇒ Feature detections alone are not enough!

Our approach: Model feature persistence beliefs
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Main idea: the feature persistence model

We propose the following feature persistence model to reason
about temporal change in semi-static environments:

T ∼ pT (·),

Xt |T =

{
1, t ≤ T ,

0, t > T ,

Yt |Xt ∼ pYt (·|Xt ;PM ,PF ).
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Key properties:

Feature abstraction: works with any map representation

Fully Bayesian: explicitly models uncertainty

Accepts any pT (·): supports a rich modeling framework

Speed: admits constant-time online inference
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Our contributions

1 The feature persistence model, a novel feature-abstracted
model of environmental change over time;

2 The persistence filter, an exact, constant-time online inference
method for computing persistence beliefs; and

3 Methods for designing custom priors to encode a priori
knowledge of environmental dynamics.
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