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• Rotation Averaging:
• Given relative rotations
• find absolute rotations

• Of great practical interest in
• 3D reconstruction
• Multi-camera rig calibration
• Sensor network Localization
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Rotation averaging is simply minimizing the sum of Frobenius 
norms between predicted and observed relative rotations, 

but this is a high-dimensional and non-convex problem.
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Shonan Rotation averaging is a very simple algorithm, 
that terminates at the global optimum, guaranteed.

• Try non-linear optimizer over 𝑅 ∈ 𝑆𝑂 3 𝑛

• If you fail, for 𝑝=4,5,… :
• Try again optimizing over 𝑄 ∈ 𝑆𝑂 𝑝 𝑛

• Repeat until you terminate

Probably terminates at a low p, e.g. 4 or 5!

Many practical problems terminate at SO(3), so 
no performance penalty there.
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There is a (loose) assumption on the noise magnitude*, 
and you need to do a trivial projection to make sure the 

Frobenius norm is over 3 × 3 matrices, but that’s it.

Need to project Q back to a 𝑝 × 3 error matrix using a 
p × 3 projection matrix 𝑃 = [𝐼3; 0] :

* A. Eriksson, C. Olsson, F. Kahl, and T.-J. Chin. Rotation averaging and strong duality, CVPR 2018



Dellaert, Rosen et al. ECCV 2020: Shonan Rotation Averaging

Using “small-world” graphs, used in CVPR by Wilson & Bindel, we can examine 
the behavior of Shonan averaging. Here we sample a single instance with
20 poses, k=4, 𝛽=0, 50-degree noise
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The fate of 200 random initial estimates shows that when the added noise is 
10 degrees instead of 50 degrees, termination happens at earlier levels.
20 poses, k=4, 𝛽=0, 10-degree noise
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Early termination also happens if we rewire a fraction of the edges randomly 
(20% here), which increases the algebraic connectivity of the graph.
20 poses, k=4, 𝛽=20%, 50-degree noise
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Finally, reducing the noise while simultaneously having more random edges is 
the best case, and we terminate at the 𝑆𝑂 3 level the majority of the time.
20 poses, k=4, 𝛽=20%, 10-degree noise
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Many real-world datasets have high 
algebraic connectivity (provided by 
the cross-cutting edges) and hence 
terminate quickly. On the left we show 
YFCC instance for a relatively small 
number of cameras.

Image from Heinly et al, CVPR 2015

SA=Shonan from p=5
SL =Shonan from p=3
S3,S4,S5 = single-level
SK = with inner constraints
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Larger, well-connect datasets in YFCC 
almost always converge to the global 
optimum FAST. Minimal performance 
penalty is checking duality convergence 
proof, which is an eigenvalue problem.

Image from Heinly et al, CVPR 2015

SA=Shonan from p=5; SL =Shonan from p=3; S3 = single-level
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Why does it work? The proof is based on SE-Sync, a method for 
pose graph optimization by Rosen et al. To sketch the idea, we 

re-write objective using outer product:

• 𝑅 = 3 × 3𝑛

• ത𝐿 = 3𝑛 × 3𝑛

• 𝑅𝑇𝑅 = 3𝑛 × 3𝑛

• Minimize 𝑡𝑟(ത𝐿𝑅𝑇𝑅) →

• Non-convex!

• But: terminates here in many many cases

ത𝐿
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While local optimization over the 𝑆𝑂 3 𝑛 manifold is non-
convex, there is beautiful yet expensive convex relaxation, in 

the form a semi-definite program (SDP).

• 𝑅 = 3 × 3𝑛

• ത𝐿 = 3𝑛 × 3𝑛

• 𝑅𝑇𝑅 = 3𝑛 × 3𝑛

• Minimize 𝑡𝑟(ത𝐿𝑅𝑇𝑅) →

• Semidefinite program (SDP) = convex !!!

• Rosen ’16 proved: if noise is not too large, 𝑍∗ can be factored as 𝑅𝑇𝑅

• Hence, this is a convex relaxation, but expensive!

ത𝐿 𝑍
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To find a global optimizer, Burer & Monteiro suggested to just try 
a low-rank approximation 𝑆𝑇𝑆. Here S is a Stiefel manifold.

• 𝑆 = 4 × 3𝑛

• ത𝐿 = 3𝑛 × 3𝑛

• 𝑆𝑇𝑆 = 3𝑛 × 3𝑛

• Minimize 𝑡𝑟(ത𝐿𝑆𝑇𝑆) →

• Burer-Monteiro ’03: low-rank approximation

• In general, non-convex, rank 4 PSD

• Use fast local search, with a bit of extra room

ത𝐿
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Does not always work, but when it does, Stiefel manifold acts as a “wormhole”, 
from which we project back onto the original the 𝑆𝑂 3 𝑛 manifold.
Here illustrated again with 20 poses, k=4, 𝛽=20%, 10-degree noise
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With some work we can optimize over this Stiefel manifold, but a 
cool fact is that the 4 × 3 Stiefel manifold is isomorphic to 𝑆𝑂(4)

• 𝑆 = 4 × 3𝑛

• ത𝐿 = 3𝑛 × 3𝑛

• 𝑆𝑇𝑆 = 3𝑛 × 3𝑛

• Minimize 𝑡𝑟(ത𝐿𝑆𝑇𝑆) →

• Easy to see, last column must be orthogonal:               =

• So we can just re-use our usual machinery!

ത𝐿
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𝑄1 𝑄4𝑆1
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What if it does not work at 𝑆𝑂(4)?? Burer & Monteiro suggested just 
re-starting from a different seed, but Boumal invented the 

Riemannian Staircase:  just switch to 𝑆𝑂 5 , etc…

• 𝑆 = 5 × 3𝑛

• ത𝐿 = 3𝑛 × 3𝑛

• 𝑆𝑇𝑆 = 3𝑛 × 3𝑛

• Minimize 𝑡𝑟(ത𝐿𝑆𝑇𝑆) →

• Continue to use fast local search, on 𝑆𝑂 5 ‼

• 𝑆𝑂 5 is not isomorphic to 5 × 3 Stiefel:                          >

• However, we just ignore the implied gauge
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Empirically, the Riemannian staircase converges for a low value of p. 
p-distribution depends on algebraic connectivity (see Wilson& Bindel CVPR)

YFCC Statue of Liberty dataset
Image from Heinly et al, CVPR 2015
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In summary:
Shonan Rotation averaging is a very simple algorithm, 
that terminates at the global optimum, guaranteed.

• Try non-linear optimizer over 𝑅 ∈ 𝑆𝑂 3 𝑛

• If you fail, for 𝑝=4,5,… :
• Try again optimizing over 𝑄 ∈ 𝑆𝑂 𝑝 𝑛

• Repeat until you terminate

Probably terminates at a low p, e.g. 4 or 5!

Many practical problems terminate at SO(3), and 
only extra cost is verifying global optimality.


